LISTA DE LAS OPERACIONES QUE FIGURAN
EN EL TOMO N. ${ }^{\circ} 1$ DEL MANUAL 854
Vehículos "A" fabricados a partir de 1963 (vehículos franceses)
Vehículos " A " fabricados a partir de 1959 (vehículos españoles)

Número de la Operación	
	DESIGNACION
	GENERALIDADES
	Características generales (vehículos franceses)
A. 000	Características generales (veh hículos españoles)
A. 000 a	Proteción de los organos eléctricos
A. 01	Trabajos hidráulicos (frenos)
A. 02	Productos preconizados
A. 03	MOTOR-CARBURACION - ENCENDIDO

A. $100-00$
A. $112-0$
A. $120-0$
A. $142-00$
A. 142.00 a
A. 142.00 b
A. 142.0
A. $173-0$
A. $210-00$

F A. 210-00 a
A. $210-0$
A. $220-0$
A. $300-0$
A. 300-0 a

Características y puntos particulares de los motores
Reglaje de los balancines
Características generales (vehículos españoles)
Poccion de los organos electricos
nos)

MOTOR - CARBURACION - ENCENDIDO

Control del calado de la distribución
Características de los carburadores (vehículos franceses)
Características de los carburadores (vehículos españoles)
Características de los carburadores (vehículos todo tipo)
Reglaje en los carburadores y mandos
Control de alimentación de gasolina
Características del encendido (vehículos franceses)
Características del encendido (vehículos españoles)
Controles y reglajes del encendido
Control y reglaje de la presión de aceite. Control de la depresión en el interior del cárter motor

- Control de la presión de aceite en el vehículo
- Control de la depresión en el cárter motor
A. 312.00
A. 314.0
A. $330-00$
A. $330-00$ a
A. $334-0$
A. 372.00
A. $410-00$
A. $410-0$

Características y puntos particulares del eje delantero
Controles y reglajes del eje delantero:

- Control de la caída de rueda
- Control y reglaje del paralelismo de las ruedas delanteras
- Reglaje del giro
- Control de un brazo delantero desmontado

EJE TRASERO
A. $420-00$

Características y puntos particulares del eje trasero
A. $420-0$

Controles del eje trasero:

- Control de los brazos traseros sobre el vehículo
- Control de un brazo trasero desmontado

This Page Is Intentionally Blank

Vehículos "A" fabricados a partir de 1963 (vehículos franceses) Vehículos " A " fabricados a partir de 1959 (vehículos españoles)

This Page Is Intentionally Blank

IDENTIFICACION DE LOS VEHICULOS «A» TODO TIPO

(Vehículos fabricados a partir de 1963)

Designación común	Designación de Industria	Símbolo* Garantía	Denominación comercial	Indice Placa motor	Tipo motor
$2 \mathrm{CV}$	AZ (serie A y AM) $3 / 63$ \rightarrow $2 / 70$ AZ (serie A 2) $2 / 70$ \rightarrow $9 / 75$ AZ (serie KB) $9 / 75$ \rightarrow $9 / 78$ AZ (serie KB) $9 / 78$ \rightarrow $9 / 79$ AZ (serie KA) $2 / 70$ \rightarrow $9 / 78$ AZ (serie KA) $9 / 78$ \rightarrow $7 / 79$ AZ (serie KA) $7 / 79$ \rightarrow $7 / 81$ AZ (serie KA) $7 / 81$ \longrightarrow	AZZ AZA KB KB KA KA KA KA	$\begin{gathered} 2 \text { CV AZL y } 2 \text { CV AZAM } \\ 2 \text { CV } 4 \\ 2 \text { CV } 4 \\ 2 \text { CV Special } \\ 2 \text { CV } 6 \\ 2 \text { CV } 6 \\ 2 \text { CV } 6 \text { Special, Club } \\ 2 \text { CV Special o Club } \\ \text { o Special E o Charleston } \end{gathered}$	$\begin{gathered} \text { AZ } \\ \text { AYA } 2 \\ \text { AYA } 2 \\ \text { AYA } 2 \\ \text { AK } 2 \\ \text { A } 06 / 635 \\ \text { A } 06 / 635 \end{gathered}$	$\begin{array}{\|l} \text { A } 53\left(425 \mathrm{~cm}^{3}\right) \\ \text { A } 79 / 1\left(435 \mathrm{~cm}^{3}\right) \\ \text { A } 79 / 1\left(435 \mathrm{~cm}^{3}\right) \\ \text { A } 79 / 1\left(435 \mathrm{~cm}^{3}\right) \\ \text { M } 28 / 1\left(602 \mathrm{~cm}^{3}\right) \\ \text { M } 28 / 1\left(602 \mathrm{~cm}^{3}\right) \\ \text { M } 28 / 1\left(602 \mathrm{~cm}^{3}\right) \end{array}$
DYANE	AYA (serie A y AM) $\quad 8 / 67 \rightarrow 3 / 78$ AYA 2 (serie A y AM) $3 / 68 \longrightarrow 2 / 70$ AYA 3 (series A y AM) 8/68 \rightarrow 10/68 AYB (series A y AM) 10/68 $\rightarrow 2 / 70$ $\begin{array}{llll}\text { AYA } 2 \text { (series A y AM) } & 2 / 70 & \longrightarrow & 9 / 75 \\ \text { AY (serie CB) } & 2 / 70 & \longrightarrow & \end{array}$	AZZ AYA CB	Dyane 4 Dyane 6 Dyane 6	AYA AYA 2 AM AK 2 AYA 2 AM 2	A $79 / 0\left(425 \mathrm{~cm}^{3}\right)$ A $79 / 1\left(435 \mathrm{~cm}^{3}\right)$ M $4\left(602 \mathrm{~cm}^{3}\right)$ M $28 / 1\left(602 \mathrm{~cm}^{3}\right)$ A $79 / 1\left(435 \mathrm{~cm}^{3}\right)$ M $28\left(602 \mathrm{~cm}^{3}\right)$
MEHARI	$\begin{array}{lrll} \text { AY }(\text { serie CA) } & 10 / 68 & \longrightarrow & 7 / 78 \\ \text { AY }(\text { serie CA) } & 7 / 78 & \longrightarrow & \end{array}$	$\begin{aligned} & \mathrm{CA} \\ & \mathrm{CA} \end{aligned}$	Mehari Mehari	$\begin{gathered} \text { AK } 2 \\ \text { A } 06 / 635 \end{gathered}$	M 28/1 $\left(602 \mathrm{~cm}^{3}\right)$ M 28/1 (602 cm^{3})
$2 \mathrm{CV}$ Furgoneta	AZU (serie A) $1 / 63$ \rightarrow $8 / 72$ AZU (serie B) $8 / 72$ \rightarrow $9 / 75$ AK (serie AP) (AZU) $9 / 75$ \rightarrow $2 / 78$	AZZ AZU AZU	$\left\{\begin{array}{c} \text { AZU } 1 / 63 \rightarrow 8 / 67 \\ \text { AZU } 8 / 67 \rightarrow 8 / 72 \\ \text { Citroën } 250 \\ \text { Citroën } 250 \end{array}\right.$	$\begin{gathered} \text { AZ } \\ \text { AYA } 2 \\ \text { AYA } 2 \\ \text { AYA } 2 \end{gathered}$	$\left\|\begin{array}{c} \text { A } 53\left(425 \mathrm{~cm}^{3}\right) \\ \text { A } 79 / 0\left(425 \mathrm{~cm}^{3}\right) \\ \text { A } 79 / 1\left(435 \mathrm{~cm}^{3}\right) \\ \text { A } 79 / 1\left(435 \mathrm{~cm}^{3}\right) \end{array}\right\|$
$3 \mathrm{CV}$ Furgoneta	AK $1 / 63 \rightarrow 5 / 68$ AK (serie B) $5 / 68 \rightarrow 8 / 70$ AK (serie AK) $8 / 70 \rightarrow 2 / 78$ AY (serie CD) $2 / 78 \rightarrow$ AY (serie CD modif.) $8 / 80 \rightarrow$	$\begin{gathered} \} \\ A Z Z \\ A K \\ C D \\ C D \end{gathered}$	AK AK Citroën 400 Acadiane Acadiane G.P.L.	$\begin{gathered} \text { AM } \\ \text { AK } 2 \\ \text { AK } 2 \\ \text { AM } 2 \text { A } \\ \text { AM } 2 \text { A G.P.L. } \end{gathered}$	M $4\left(602 \mathrm{~cm}^{3}\right)$ M $28 / 1\left(602 \mathrm{~cm}^{3}\right)$ M 28/1 $\left(602 \mathrm{~cm}^{3}\right)$ M 28/1 $\left(602 \mathrm{~cm}^{3}\right)$ M 28/1 $\left(602 \mathrm{~cm}^{3}\right)$
3 CV Berlina y Break	$\left.\begin{array}{llll}\text { AM } & & \rightarrow & 5 / 68 \\ \text { AMB } & & & \\ \text { AM 2 } & 5 / 68 & \rightarrow & 3 / 69 \\ \text { AMB 2 } & 5 / 68 & \rightarrow & 7 / 69 \\ \text { AM 3 } & & \\ \left.\begin{array}{l}\text { AM (serie JA) } \\ \text { AM (serie JB) }\end{array}\right\} & 3 / 69 & \rightarrow & 7 / 69 \\ \text { AM (serie JC) }\end{array}\right\}$ $7 / 69$ \rightarrow $9 / 78$	$\left\{\begin{array}{r} A Z Z \\ J A \\ J B \\ J C \end{array}\right.$	AMI 6 AMI 6 Break AMI 6 AMI 6 Break AMI 8 AMI 8 AMI 8 Break y Comercial AMI 8 Break Servicio	AM AM AM 2	M $4\left(602 \mathrm{~cm}^{3}\right)$ M $4\left(602 \mathrm{~cm}^{3}\right)$ M 28 ($602 \mathrm{~cm}^{3}$) M 28 ($602 \mathrm{~cm}^{3}$) M $28\left(602 \mathrm{~cm}^{3}\right)$ M 28 ($602 \mathrm{~cm}^{3}$) M 28 (602 cm^{3}) M 28 ($602 \mathrm{~cm}^{3}$)

* Todos los vehículos fabricados antes del Salón 1972, tienen el símbolo de garantía: AZZ.

圈 Vehículos que ya no son comercializados.

BERLINAS

Número de plazas

Neumáticos:

Tipo: \{

Presión en bares: $\left\{\begin{array}{l}\text { delantera } \\ \text { trasera }\end{array}\right.$

Cotas generales:

Distancia entre ejes
Vía delantera
Vía trasera
Longitud total
Anchura total
Altura total (en vacío)

Distancia al suelo (en carga)

Diámetro de giro
Peso en vacío y en orden de marcha

Peso total autorizado en carga

Remolcado:

Peso máximo en la flecha

Peso máximo sin dispositivo de frenos

Peso máximo con freno de inercia
Arranque en cuesta con remolque

Peso máximo en el portaequipajes de techo

Capacidades diversas:

Depósito de gasolina

Motor:

Capacidad después de vaciado

"DYANE"

(Vehículos fabricados hasta Febrero de 1970)

DYANE

(Vehículos fabricados a partir de Febrero de 1970)

	AYA 2 (serie A y AM) Dyane $2 / 1970 \longrightarrow 9 / 1975$	$\begin{aligned} & \text { AY (serie CB) } \\ & \text { Dyane } 6 \\ & 2 / 1970 \quad \longrightarrow \end{aligned}$
Peso en vacío y en orden de marcha Peso total autorizado en carga	$\begin{aligned} & 590 \mathrm{~kg} . \\ & 925 \mathrm{~kg} . \end{aligned}$	$\begin{aligned} & 600 \mathrm{~kg} . \\ & 930 \mathrm{~kg} . \end{aligned}$

"FURGONETAS 2 y 3 CV"

	$\begin{gathered} \text { AZU }(\text { serie A) } \\ \text { AZU }(\text { serie B) } \\ \text { AZU }(\text { serie A) } \\ 1 / 1963 \longrightarrow 2 / 1972 \\ \text { CITROEN } 250 \\ 2 / 1972 \rightarrow 2 / 1978 \end{gathered}$	AK AK (serie B) AK (serie AK) AK 1/1963 $\longrightarrow 5 / 1968$ AK (serie B) 5/1968 \longrightarrow 8/1970 CITROEN 400 8/1970 \rightarrow 2/1978
Peso en vacío y en orden de marcha Peso total autorizado en carga	$\begin{aligned} & 530 \mathrm{~kg} . \longrightarrow 2 / 1972 \\ & 560 \mathrm{~kg} .2 / 1972 \longrightarrow \\ & 880 \mathrm{~kg} . \longrightarrow 2 / 1972 \\ & 910 \mathrm{~kg} .2 / 1972 \longrightarrow \end{aligned}$	$\begin{gathered} A K \text { y } A K B=620 \mathrm{~kg} . \\ A K(\text { serie } A K)=640 \mathrm{~kg} . \\ A K \text { y } A K B=1.055 \mathrm{~kg} . \\ A K(\text { serie } A K)=1.115 \mathrm{~kg} . \end{gathered}$

BREAKS y UTILITARIOS

Número de plazas:
sin asiento trasero
con asiento trasero

Neumáticos:

Tipo
(con cámara incorporada) (export con cámara)

Breaks 3 CV	"Mehari"	Furgonetas 2 CV
Break Comercial 2/3	2	2
Break Familiar 4/5	4	4
$125-380$ o $135-380 \times$	$135-380 \times$	$125 \cdot 380 \times$
	$135 \cdot 380 \times M+$ S	120 montaje autorizado $135 \cdot 380 \times$

Ver Manual de Empleo

2,400 m.	2,370 m.	2,400 m.
1,260 m.	1,260 m.	1,260 m.
1,220 m.	1,260 m.	1,260 m.
3,991 m.	3,520 m.	3,605 m.
1,524 m.	1,530 m.	1,500 m.
1,520 m.	1,530 m.	1,723 m.
0,130 m.	0,177 m.	0,180 m.
$11,400 \mathrm{~m}$.	10,700 m.	10,700 m.
AMI 6: 690 kg .	555 kg .	Ver cuadro página 4
AMI 8: 725 kg .		
AMI 6: 1.065 kg .	935 kg .	Ver cuadro página 4
35 kg .	35 kg .	35 kg .
AMI 6: 340 kg .	270 kg .	AZU \longrightarrow 2/72: 200 kg .
AMI 8: 360 kg .		AZU 2/72 $\longrightarrow: 270 \mathrm{~kg}$.
500 kg .	400 kg .	400 kg .
11 \%	11 \%	AZU \rightarrow 2/72: 11 \%
		AZU $2 / 72 \longrightarrow: 12 \%$
30 kg .	30 kg .	30 kg .
AMI 6: 25 litros	25 litros	20 litros \longrightarrow 7/71
AMI 8: 30 litros		25 litros 7/71 \longrightarrow
2,4 litros	2,4 litros	2,3 litros
0,9 litros	0,9 litros	0,9 litros

	Furgoneta 3 CV	Furgoneta 3 CV Acadiane
2	2	
$135-380 \times$	135 SR 15 ZX	

0

	2,400 m.	2,535 m.
	1,260 m.	1,260 m.
	1,260 m.	1,260 m.
	3,805 m.	4,030 m.
	1,500 m.	1,500 m.
	AK y AKB 1,723 m.	1,820 m.
	AK serie AK 1,840 m.	
	0,160 m.	0,140 m.
	10,700 m.	11,440 m.
	Ver cuadro página 4	680 kg .
,	Ver cuadro página 4	1.155 kg .
	35 kg .	35 kg .
<g.	$A K \longrightarrow 5 / 68: 200 \mathrm{~kg}$.	
	500 kg .	500 kg .
\%	12 \%	12 \%
	30 kg .	40 kg .
	25 litros	25 litros
	2,4 litros	2,4 litros
	0,9 litros	0,9 litros

This Page Is Intentionally Blank

IDENTIFICACION DE LOS ELEMENTOS DEL VEHICULO
（Francia）
AMI 8
S．A．A．CITROEN

＠

©

O＾ISヨHO甘 OLП甘
IDENTIFICACION
FICHA CARACTERISTICAS

©
（0）

IDENTIFICACION C．V．IDENTIFICACION CAJA
（n）
RELACION DEL N．${ }^{\circ}$ CONSTRUCTOR
（5）

（5）
\forall WHO刁 $\forall \perp \forall า d$ o $N \forall ว \forall า d$

IDENTIFICACION DE LOS ELEMENTOS DEL VEHICULO
(Francia)

S. A. A.	CITROEN
TIPO	SERIE
PTC	
	PTR

RELACION DEL N. ${ }^{\circ}$ CONSTRUCTOR
PLACA N. ${ }^{\circ}$ CONSTRUCTOR
()

©

IDENTIFICACION
FICHA CARACTERISTICAS
©

AUTO ADHESIVO
IDENTIFICACION EJE TRA
(-)

AUTO ADHESIVO
IDENTIFICACION C.V.

HOLOW o N VJヲาd

IDENTIFICACION DE LOS ELEMENTOS DEL VEHICULO
(Francia)
FURGONETA

@

This Page Is Intentionally Blank

IDENTIFICACION DE LOS VEHICULOS "A" TODO TIPO

Vehículos fabricados en España a partir de 1959

Designación corriente	Denominación en Industria	Denominación comercial	Tipo de motor
2 CV	AZL $\rightarrow 1 / 59 \rightarrow \mid 3 / 71$	AZL y AZAM	A $53\left(425 \mathrm{~cm}^{3}\right)$
	AX \rightarrow 10/66 \rightarrow \| 2/73	AZAM 6	M $4\left(602 \mathrm{~cm}^{3}\right)$
	AX6 ${ }^{\text {a }}$ / 73	2CV-6	M 28/1 (602 cm ${ }^{3}$)
DYANE	AY $\rightarrow 7 / 68 \rightarrow \mid 12 / 72$	Dyane 6	M 4 (602 cm ${ }^{3}$)
	$A Y B \rightarrow 3 / 72$	Dyane 6	M 28 (602 cm ${ }^{3}$)
MEHARI	AY.CA $\rightarrow 9 / 69 \rightarrow 19 / 78$	Mehari	M 28/1 (602 cm ${ }^{3}$)
	AY.CA $\mapsto 9 / 78$	Mehari	M 28 (602 cm ${ }^{3}$)
Furgoneta 2 CV	AZU \rightarrow 1/58 \rightarrow \| 6/70	Furgoneta 250	A $53\left(425 \mathrm{~cm}^{3}\right)$
Furgoneta 3 CV	AK ${ }^{\text {a }}$ (1/67 \rightarrow 2/73	Furgoneta AK	M $4\left(602 \mathrm{~cm}^{3}\right)$
	AKS $\rightarrow 2 / 73 \rightarrow \mid 5 / 78$	Furgoneta 400	M 28/1 (602 cm^{3})
$\begin{gathered} \text { Furgoneta } \\ \text { DYANE } 6-400 \\ \hline \end{gathered}$	AYU $\rightarrow 4 / 78$	Dyane 6-400	M 28 (602 cm ${ }^{3}$)
Berlina y Break 3 CV	AMB $\mapsto 4 / 67 \rightarrow \mid 4 / 71$	Break	M 4 (602 cm ${ }^{3}$)
	AMB $2 \rightarrow$ 12/68 \rightarrow 6/71	Dynam	M 28 (602 cm ${ }^{3}$)
	AM $3 \rightarrow 3 / 70 \rightarrow 7 / 77$	C-8 Berlina	M 28 (602 cm^{3})
	AMF 3-AMU $3 \rightarrow 4 / 71 \rightarrow \mid 7 / 77$	C-8 Break - Comercial	M $28\left(602 \mathrm{~cm}^{3}\right)$

«2 CV"

I. CARACTERISTICAS GENERALES:

ia	AZL	AX	AX-6
Denominación Comercial	AZL 2 S	AZAM 6	2 CV 6
Fecha de fabricación	Enero 59 hasta Marzo 71	Oct. 66 hasta Febrero 73	A partir Febrero 73
Número de plazas	4	4	4
Neumáticos	125-380 X	135-380 X	135-380 ZX
Presiones Delanteras	1,4 bares	1,4 bares	1,4 bares
Presiones $\{$ Traseras	1,8 bares	1,8 bares	1,8 bares

II. COTAS GENERALES:

Distancia entre ejes	2,400 m.	2,400 m.	2,400 m.
Ancho de vía delantera	1,260 m.	1,260 m.	1,260 m.
Ancho de vía trasera	1,260 m.	1,260 m.	1,260 m.
Longitud total	3,820 m.	3,820 m.	3,860 m.
Anchura total	1,480 m.	1,480 m.	1,480 m.
Altura total (en vacio)	1,600 m.	1,600 m.	1,600 m.
Distancia al suelo (en carga)	0,150 m.	0,150 m.	0,150 m.
Diámetro de giro	10,700 m.	10,700 m.	10,700 m.
Peso en vacío en orden de marcha	535 kg .	586 kg .	590 kg .
Carga útil	335 kg .	335 kg .	335 kg .
Peso total autorizado en carga	870 kg .	921 kg .	925 kg .
Remolcado:			
- Peso máximo sobre el enganche	20 kg .	20 kg .	20 kg .
- Peso máximo sin dispositivo de frenado	200 kg .	200 kg .	200 kg .
- Peso máximo con freno de inercia	400 kg .	400 kg .	400 kg .
- Rampa máxima con remolque de 400 kg .	11%	11%	11 \%
- Peso máximo sobre el portaequipajes	30 kg .	30 kg .	30 kg .

III. CAPACIDADES DIVERSAS:

Depósito de gasolina	20 litros	20 litros	25 litros
Motor:			
- Capacidad del cárter después de vaciado	2 litros	2 litros	2,2 litros
- Caja de velocidades	0,9 litros	0,9 litros	0,9 litros

«DYANE»

I. CARACTERISTICAS GENERALES:

Designación de Industria
Denominación Comercial
Fecha de fabricación
Número de plazas
Neumáticos

$\left\{\begin{array}{l}\text { Delanteras } \\ \text { Traseras } .\end{array}\right.$

AY
Dyane
Julio 68 hasta Diciembre 72

4

135-380 X
1,4 bares
1,8 bares

AYB
Dyane 6
A partir de Marzo 72
4
135 . 380 ZX
1,4 bares
1,8 bares

II. COTAS GENERALES:

Distancia entre ejes
Ancho de vía delantera
Ancho de vía trasera
Longitud total
Anchura total
Altura total (en vacío)
Distacia al suelo (en carga)
Diámetro de giro
Peso en vacío en orden de marcha
Peso total autorizado en carga
Remolcado:

- Peso máximo sobre el enganche
- Peso máximo sin dispositivo de frenado
- Peso máximo con freno de inercia
- Rampa máxima con remolque de 400 kg .
- Peso máximo sobre el portaequipajes

2,400 m.
1,260 m.
1,260 m.
$3,905 \mathrm{~m}$.
$1,500 \mathrm{~m}$.
1,540 m.
0,155 m.
10,700 m.
615 kg .
990 kg .
20 kg .
200 kg .
400 kg .
11 \%
30 kg .

2,400 m.
$1,260 \mathrm{~m}$.
$1,260 \mathrm{~m}$.
$3,905 \mathrm{~m}$.
$1,500 \mathrm{~m}$.
$1,540 \mathrm{~m}$.
$0,155 \mathrm{~m}$.
$10,700 \mathrm{~m}$.
622 kg .
997 kg .
20 kg .
200 kg .
400 kg .
11 \%
30 kg .

III. CAPACIDADES DIVERSAS:

Depósito de gasolina	25 litros	25 litros
Motor:		
- Capacidad del cárter después de vaciado	2 litros	2,2 litros
- Caja de velocidades	0,9 litros	0,9 litros

«MEHARI»

I. CARACTERISTICAS GENERALES:

Designación de Industria	AY - CA
Denominación Comercial	Mehari
Fecha de fabricación	Septiembre 69
Sin asiento trasero	2
as Con asiento trasero	$2+2$

Neumáticos:

Dimensión	Presión de inflado (en bares)		
		Delanteros	Traseros
$135 \cdot 380 \mathrm{ZX}$	Sin cámara	Carretera $=1,4$	1,8
		Carretera en mal estado $=1,6$	1,8
		Carretera $=1,4$	1,4
		Arena $=1,2$	1,2

II. COTAS GENERALES:

Distancia entre ejes	2,400 m.
Ancho de vía delantera	1,260 m.
Ancho de vía trasera	1,260 m.
Longitud total	3,530 m.
Anchura total	1,530 m.
Altura total (en vacio)	1,635 m.
Distancia al suelo (en carga)	0,177 m.
Diámetro de giro	10,700 m.
Peso en vacío en orden de marcha	570 kg .
Peso total autorizado en carga	935 kg .
Remolcado:	
- Peso máximo sobre el enganche	20 kg .
- Peso máximo sin dispositivo de frenado	200 kg .
- Peso máximo con freno de inercia	400 kg .
- Rampa máxima con remolque de 400 kg .	11 \%

III. CAPACIDADES DIVERSAS:

Depósito de gasolina 25 litrosMotor:

- Capacidad del cárter después de vaciado 2, 2 litros
- Caja de velocidades 0,9 litros

"FURGONETAS 2-3 CV Y DYANE 6-400"

I. CARACTERISTICAS GENERALES:

III. CAPACIDADES DIVERSAS:

Depósito de gasolina	20 litros	25 litros
Motor:		25 litros
- Capacidad del cárter después de vaciado	2 litros	2,2 litr $3 s$
- Caja de velocidades	0,9 litros	0,9 litros

IDENTIFICACION DE LOS ELEMENTOS DEL VEHICULO 2 CV 6 BERLINA
A. 00.14

IDENTIFICACION DE LOS ELEMENTOS DEL VEHICULO
DYANE
Manual 854-1

IDENTIFICACION DE LOS ELEMENTOS DEL VEHICULO

C-8 BERLINA

CITROĖN HISPANIA, S. A.
VIGO-ESPANA
\square
PLAGA DE CONSTRUCTOR (a)
(a)

(6)

 AUTO ADHESIVO
IDENTIFICACION EJE DELANTERO

(b)

LACA DE CONSTRUCTOR

(2)

IDENTIFICACION DE LOS ELEMENTOS DEL VEHICULO MEHARI

(b)
(ㄷ)

IDENTIFICACION EJE TRASERO
(

AUTO ADHESIVO
CAJA DE VELOCIDADES

PLACA DE MOTOR
(3)

IDENTIFICACION DE LOS ELEMENTOS DEL VEHICULO
FURGONETAS

A 00.15

PROTECCION DE LOS ORGANOS ELECTRICOS

PRECAUCIONES QUE SE DEBEN TOMAR CUANDO SE HAGA UNA INTERVENCION

SOBRE EL VEHICULO

Es indispensable evitar ciertas maniobras erróneas que podrían correr el riesgo de deteriorar algunos órganos eléctricos, o provocar un cortocircuito (riesgo de incendio o accidente).

1. Batería:

a) Desconectar, en primer lugar, el terminal del borne negatiyo de la batería, después el del borne positivo.
b) Conectar con precaución los dos terminales sobre los bornes de la batería, el terminal del borne negativo debe ser conectado en último lugar.
c) Antes de embornar el terminal negativo, comprobar que no hay paso de corriente. Para esto tocar con el terminal el borne negativo de la batería: no debe haber chispas, sino es que existe un cortocircuito en la instalación, es necesario repararlo.
d) La batería debe estar correctamente embornada: el borne negativo debe quedar unido a masa.
e) Antes de accionar el motor de arranque comprobar que los dos terminales están correctamente apretados sobre sus bornes respectivos.
2. Dínamo-Alternador-Regulador:
a) No haga girar el alternador sin que haya sido conectado a la batería.
b) Comprobar, antes de conectar el alternador, que la batería está correctamente embornada (borne negativo a masa).
c) No compruebe el funcionamiento del alternador colocando en cortocircuito los bornes positivo y de masa, o los bornes "Exc" y masa.
d) No invertir los cables que se conectan al regulador.
e) No intentar cebar un alternador: no es necesario nunca y ésto podría provocar averías en el alternadory en el regulador.
f) No conectar un condensador antiparasitario en el borne "EXC" de la dínamo, del alternador o del regulador.
g) No unir los bornes a un cargador de baterías y no soldar nunca con soldadura eléctrica (o con una soldadura de puntos) sobre el chasis del vehículo sin haber desembornado los dos cables, positivo y negativo, de la batería y haber aislado el cable positivo de la masa.
3. Bobina del encendido:

No conectar un condensador antiparasitario en el borne "RUP" de la bobina.
Montar un condensador preconizado por la fábrica, sobre el borne "+" 0 "BAT" de la bobina.
4. Lámpara de iodo:

[^0]This Page Is Intentionally Blank

1. PRECAUCIONES QUE SE DEBEN DE TOMAR:

A. Vehículos equipados con frenos de tambor en las 4 ruedas:

UTILIZAR EL LIQUIDO DE FRENOS RECOMENDADO EN LA NORMA SAE J 1703

No utilizar nada más que juntas, guarniciones y tubos flexibles cuya calidad corresponde al líquido hidráulico sintético especial para frenos.
Limpiar las piezas con alcohol o en su defecto, con líquido hidráulico de la mima calidad que se está utilizando en el circuito de frenado.
Limpiar el circuito hidráulico: Con alcohol exclusivamente.
B. Vehículos equipados con frenos de disco delanteros:

UTILIZACION DE LIQUIDO HIDRAULICO MINERAL (LHM) EN EL CIRCUITO DE FRENADO DE LOS
VEHICULOS EQUIPADOS DE FRENOS DE DISCO DELANTEROS.
No utilizar nada más que juntas, guarniciones y tubos flexibles cuya calidad responda al líquido hidráulico mineral
(LHM) (marcados en verde).
Limpiar las piezas con gasolina y soplar con aire comprimido.

- Colocar en su alojamiento el casquillo " a ", humedecido con líquido hidráulico para frenos, en el tubo. Este casquillo debe estar retrasado con respecto al extremo "b" del tubo.
- Centrar el tubo en el orificio, presentándolo según el eje de éste y evitar obligarlo. (Comprobar que el extremo " b " del tubo penetra en el pequeño orificio " c ").
- Apuntar la tuerca racor con la mano.
- Apretar moderadamente la tuerca; un apriete excesivo, ocasionaria una fuga por deformación del tubo.

NOTA: Pares de apriete:
$\left.\begin{array}{l}\text { Tubo de } \phi=3,5 \mathrm{~mm} . \\ \text { - Tubo de } \phi=4,5 \mathrm{~mm} .\end{array}\right\} 0,8$ a $0,9 \mathrm{da} \mathrm{Nm}$.

Por construcción, los diferentes casquillos, son tanto más estancos cuando la presión es más elevada. Por lo tanto, no se aumenta más la estanqueidad aumentando el apriete de los racores.

2. VERIFICACION DESPUES DE LOS TRABAJOS

Después de cualquier trabajo sobre los órganos o el circuito hidráulico, verificar la estanqueidad de los racores.

This Page Is Intentionally Blank

PRINCIPALES PRODUCTOS PRECONIZADOS

PRODUCTOS	UTILIZACION	PROVEEDORES
TURCO-SOL V	Desengrasante en frío para conjuntos metálicos	TURCO ESPAÑOLA, S. A. Avda. Infanta Carlota, 57, pral. 2. ${ }^{\text {a }}$ Barcelona - 15 Teléfonos 2437800 - 2508948
MET - A - LIT	Estanqueidad de las porosidades del cárter	Servicio de Piezas de Recambio Referencia 1.108.193
SILASTIC 733 RTV	Estanqueidad de las porosidades del cárter	CIA. ATLANTICA DE TRANSACCIONES C/. Velázquez, 41 Madrid - 1 Teléfono 2258414
METOLUX A	Estanqueidad de las porosidades del cárter	PROMAR, S. A. Plaza Duque de Medinaceli, 5 Barcelona - 2 Teléfono 2226468
DEVCON	Estanqueidad de las porosidades del cárter	RICARDO DE MANUEL, S. A. C/. Londres, 65-67 Barcelona - 11 Teléfonos $2390605 \cdot 2390600$
PLASTISOL D.C.O. 625	Pasta para estanqueidad de los espárragos del cárter	SYNTHESIA ESPAÑOLA C/. Conde Borrell, 62 Barcelona - 15 Teléfonos 3253158 - 3252458
MASTI - JOINT HD 37	Pasta selladora	Servicio de Piezas de Recambio Referencia 1.108.160/2
MOLYCOTE 557	Grasa de silicona para los casquillos de estanqueidad de la turbina de bomba de agua	KRAFFT Ctra. Urnieta, s/n.
MOLYCOTE BR 2	Engrase de transmisiones para vehículos " A "	ANDOIN (Guipúzcoa) Teléfono 358740
ROCOL ASP	Grasa para bomba de agua	BRUGAROLAS, S. A. Vía Layetana, 92
GLY - 270	Engrase general y de pequeños mecanismos	Teléfono 2213117

PRODUCTOS	UTILIZACION	PROVEEDORES
Grasa Fiat MR M 2	Transmisiones del Vehículo GS	LUBRICANTES JOCKEY Avda. del Metro, 18-20 Hospitalet de Llobregat (Barcelona) Teléfono 3371550
ARALDIT	Pegamento	CEYS Comercial de Exclusivas y Suministros, S. A. C/. Modolell, 2 Barcelona - 6-Teléfono 2145419
LOCTITE OLEOETANCHE	Inmovilización de tornillos y estanqueidad de los mismos	Servicio de Piezas de Recambio Referencia GX 01.459.01 A
LOCTITE ADHESIVE 312	Pegamento de gran dureza	Servicio de Piezas de Recambio Referencia 1.108.191
LOCQUIE ADTIVATOR 312 N.F.	Activador para LOCTITE ADHESIVE 312	Servicio de Piezas de Recambio Referencia 1.108.186
LOCTITE SCREW LOCK	Inmovilización de tornillos de posicionamiento y reglaje	Servicio de Piezas de Recambio Referencia 1.108.187
BUNITEX	Pegamento para guarnecidos	Servicio de Piezas de Recambio Referencia 1.108.184
EC 821	Pegamento para guarnecidos	Servicio de Piezas de Recambio Referencia 1.181.192
SCOTCH - CALK	Protección contra entradas de agua	Servicio de Piezas de Recambio Referencia 1.108.189
W. D. 40 (Aerosol)	Lubricante y anticorrosivo	Servicio de Piezas de Recambio Referencia 1.108.200
HEXYLENE GLYCOL	Aclarado de las canalizaciones hidráulicas que Ilevan líquido LHS 2	Servicio de Piezas de Recambio Referencia 1.123.031
TOTAL HYDRAURINCAGE	Aclarado de las canalizaciones hidráulicas que llevan líquido LHM	Servicio de Piezas de Recambio Referencia 1.111.014
BUNDERPLAST	Pasta pulidora para la regeneración del color de carrocería en el Mehari	PRODUCTOS IBERMEX
STILL RAPID AUTO POLISH - ANTISMOG	Abrillantador de carrocerías	Madrid - 28 Teléfonos 2455304 - 2453984
COLLAFEU	Estanqueidad de los tubos de calefacción de la caja de admisión (vehículo GS)	Servicio de Piezas de Recambio Referencia 1.108.185

LOCTITE:

EI Departamento de Piezas de Recambio, vende dos tipos de productos LOCTITE, en los que se debe utilizar el acelerador LOCQUIE-T, bajo las referencias siguientes:

$$
\begin{array}{ll}
\text { LOCTITE OLEOETANCHE } & \text { GX 01.459.01 A } \\
\text { LOCTITE ADHESIVE } 312 . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ & 1.108 .191 \\
\text { LOCQUIE ACTIV ATOR } 312 \text { N.F. } & 1.108 .186
\end{array}
$$

UTILIZACION: EI acelerador LOCQUIE-T es un activador destinado a aquellas piezas sobre las cuales se van a utilizar los productos LOCTITE anteriormente mencionados. Las piezas no metalizadas necesitan un tratamiento previo con el acelerador LOCQUIE-T. La mayor parte de las piezas cincadas, cadmiadas, aluminizadas, o de acero inoxidable exigen este tratamiento con el fin de que el LOCTITE pueda endurecer rápidamente. El acelerador LOCQUIE-T puede servir para desengrasar las piezas. Utilizarlo también como activador de las superficies inertes. Pulverizar sobre las superficies que vayan a ser tratadas con los productos LOCTITE.

Cepillar y limpiarlas para quitar la grasa. Pulverizar de nuevo para limpiarlas perfectamente. Repetir la operación si es necesario. Aplicar únicamente el LOCTITE cuando el acelerador esté perfectamente seco.

ATENCION: Precauciones que se deben tomar. Proceder con una ventilación correcta durante la utilización. Evitar un contacto prolongado y repetido con la piel. No tragarlo. Evitar pulverizarlo sobre superficies pintadas. Conservar el envase del LOCQUIE-T a una temperatura inferior a $44^{\circ} \mathrm{C}$.

This Page Is Intentionally Blank

I. CARACTERISTICAS GENERALES VEHICULOS FRANCESES

TIPO DE MOTOR	VEHICULO
A $53\left(425 \mathrm{~cm}^{3}\right.$)	AZ (Serie A y AM) 3/1963 $\rightarrow 2 / 1970$ AZU 3/1963 \longrightarrow 8/1967
A 79/0 (425 cm ${ }^{3}$)	AZU 8/1967 \rightarrow 8/1972 AYA (Serie A y AM) 8/1967 $\rightarrow 3 / 1968$
A 79/1 $\left(435 \mathrm{~cm}^{3}\right)$	$A Z$ (Serie A 2) 2/1970 \rightarrow 2/1975 AZ (Serie KB) 9/1975 \rightarrow 9/1979 AYA 2 (Serie A y AM) 3/1968 $\rightarrow 9 / 1975$ AZU (Serie B) 8/1972 \rightarrow 9/1975 AK (Serie AP) 9/1975 \longrightarrow 2/1978
M 4 ($602 \mathrm{~cm}^{\mathbf{3}}$)	AYA 3 (Serie A y AM) 1/1968 \longrightarrow 10/1968 $A K \longrightarrow 5 / 1968$ AM 10/1963 $\rightarrow 5 / 1968$ AMB 10/1963 $\longrightarrow 5 / 1968$
M 28 (602 cm ${ }^{3}$)	AY (Serie CB) 2/1970 \longrightarrow AM $25 / 1968 \rightarrow 3 / 1969$ AMB 2 5/1968 \rightarrow 7/1969 AM 3 3/1969 \longrightarrow 7/1969 AM (Serie JA) 9/1969 \rightarrow 9/1978 AM (Serie JB y JC) 9/1969 \rightarrow 9/1978
M 28/1 (602 cm ${ }^{\mathbf{3}}$)	AYB (Serie A y AM) 10/1968 $\boldsymbol{\rightarrow}$ 2/1970 $A Z($ Serie KA) 2/1970 \longrightarrow AY (Serie CA) 10/1968 \longrightarrow AK (Serie B) 5/1968 $\rightarrow 8 / 1970$ AK (Serie AK) 8/1970 \longrightarrow 2/1978 AY (Serie CD) 2/1978 \longrightarrow AY (Serie CD modificado) 8/1980 \longrightarrow

Tipo de motor	A 53	A 79/0	A 79/1	M 4	
				AYA 3	AK
Número de cilindros	2 en horizontal				
Potencia fiscal (Francia)	2 CV			3 CV	
Cilindrada	$425 \mathrm{~cm}^{3}$		$435 \mathrm{~cm}^{3}$	$602 \mathrm{~cm}^{3}$	
Diámetro	66 mm .		$68,5 \mathrm{~mm}$.	74 mm .	
Carrera	62 mm .		59 mm .	70 mm .	
Relación volumétrica	7,5/1	7,75/1	8,5/1	7,75/1	
Potencia efectiva ISO	13,2 kw	15,5 kw	$17,7 \mathrm{kw}$	20,6 kw	19,1 kw
	(18 CV DIN)	(21 CV DIN).	(24 CV DIN)	(29 CV DIN)	(26 CV DIN)
	a $5.000 \mathrm{r} . \mathrm{p} . \mathrm{m}$.	a 5.450 r.p.m.	a 6.750 r.p.m.	a $5.000 \mathrm{r} . \mathrm{p} . \mathrm{m}$.	a 4.500 r.p.m.
Par máximo ISO	2,9 m.daN	3,1 m.daN	2,9 m.daN	$4,5 \mathrm{~m} . \mathrm{daN}$	4,1 m.daN
	(2,9 m.kg. DIN)	(3 m.kg. DIN)	($2,9 \mathrm{~m} . \mathrm{kg}$. DIN)	(4,4 m.kg. DIN)	(4 m.kg. DIN)
	a 3.500 r.p.m.	a 3.500 r.p.m.	a 4.500 r.p.m.	a 3.500 r.p.m.	a 3.500 r.p.m.

Tipo de motor	Я. M 28	30	12193		
Placa motor	AM 2	AK 2	A 06/635	AM 2 A	AM 2 G.P.L.
Número de cilindros	$\begin{gathered} 2 \text { en horizontal } \\ 3 \mathrm{CV} \end{gathered}$				
Potencia fiscal (Francia)					
Cilindrada	$602 \mathrm{~cm}^{3}$				
Diámetro	74 mm .				
Carrera	70 mm .				
Relación volumétrica	9/1		8,5/1		
Potencia efectiva ISO	21,5 kw	19,1 kw	21 kw		18 kw
	(30 CV DIN)	(26 CV DIN)	(29 CV DIN)		(25 CV DIN)
	a 5.750 r.p.m.	a $5.500 \mathrm{r} . \mathrm{p} . \mathrm{m}$.	a 5.750 r.p.m.		a 5.000 r.p.m.
Par máximo ISO	$4,1 \mathrm{~m} . \mathrm{daN}$	$4,1 \mathrm{~m} . \mathrm{daN}$	$3,8 \mathrm{~m} . \mathrm{daN}$		3,6 m.daN
	(4,2 m.kg. DIN)	$4 \mathrm{~m} . \mathrm{kg}$. DIN)	(4 m.kg. DIN)		(3,7 m.kg. DIN)
-	a 4.000 r.p.m.	a 3.500 r.p.m.	a 3.500 r.p.m.		a 2.500 r.p.m.

CARACTERISTICAS GENERALES VEHICULOS ESPAÑOLES

TIPO DE MOTOR	VEHICULO
A 53 (425 cm ${ }^{3}$)	$\begin{aligned} & \text { AZ }(2002-0) 1 / 59 \rightarrow 1 / 71 \\ & \text { AZ }(E 002-0) 1 / 71 \rightarrow 3 / 71 \\ & \text { AZ }(2003-0) 5 / 58 \rightarrow 6 / 70 \end{aligned}$
M 4 ($602 \mathrm{~cm}^{\mathbf{3}}$)	AZ (2024-0) 10/66 \rightarrow 12/70 AZ (E 024-0) 2/71 $\rightarrow 3 / 73$ AY (2053-0) 7/68 \rightarrow 1/71 AY (E 053-0) 1/71 \rightarrow 12/72 AK (E $027 \cdot 0$) 1/67 $\rightarrow 1 / 71$ AK (E 027-0) 1/71 \rightarrow 1/73 AMB (2028-0) 4/67 $\rightarrow 4 / 71$
M 28/1 (602 cm ${ }^{3}$)	

Tipo de motor	$\text { A } 53$	2AJIT2IRコTOARAO M 4	
		AY	AK
Número de cilindros Potencia fiscal Cilindrada \qquad Diámetro \qquad Carrera \qquad Relación volumétrica Potencia efectiva ISO Par máximo ISO \qquad	$\begin{gathered} 2 \text { horizontales } \\ 3,98 \mathrm{cV} . \mathrm{F} . \\ 425 \mathrm{~cm} \\ 66 \mathrm{~mm} . \\ 62 \mathrm{~mm} . \\ 7,5 / 1 \\ 13,2 \mathrm{kw} \\ (18 \mathrm{CV} . \text { DIN }) \\ \text { a } 5.000 \mathrm{r} . \mathrm{p} . \mathrm{m} . \\ 2,9 \mathrm{~m} . \mathrm{daN} \\ (2,9 \mathrm{~m} . \mathrm{kg} . \text { SAE }) \\ \text { a } 3.500 \mathrm{r} . \text { p.m. } \end{gathered}$	2 horizontales $4,91 \mathrm{CV} . \mathrm{F}$. $602 \mathrm{~cm}^{3}$ 74 mm. 70 mm. $7,75 / 1$ $20,6 \mathrm{kw}$ $(28 \mathrm{CV} . \mathrm{DIN})$ a $5.000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. $4,5 \mathrm{~m} . \mathrm{daN}$ $(4,4 \mathrm{~m} . \mathrm{kg}$. SAE) a 3.500 r.p.m.	2 horizontales $4,91 \mathrm{CV}$. F . $602 \mathrm{~cm}^{3}$ 74 mm . 70 mm . 7,75/1 19,1 kw (26 CV. DIN) a 4.500 r.p.m. 4,1 m.daN ($4 \mathrm{~m} . \mathrm{kg}$. SAE) a 3.500 r.p.m.

Tipo de motor	M 28/1		
	AK 2	AM 2 A	A 06/635
Número de cilindros	2 horizontales	2 horizontales	2 horizontales
Potencia fiscal	$4,91 \mathrm{CV}$. F.	4,91 CV. F.	4,91 CV. F.
Cilindrada	$602 \mathrm{~cm}^{3}$	$602 \mathrm{~cm}^{3}$	$602 \mathrm{~cm}^{3}$
Diámetro	74 mm .	74 mm .	74 mm .
Carrera	70 mm .	70 mm .	70 mm .
Relación volumétrica	8,5/1	8,5/1	8,5/1
Potencia efectiva ISO	19,1 kw	21 kw	21 kw
	(26 CV. DIN)	(29 CV. DIN)	(29 CV. DIN)
	$\begin{aligned} & \text { a } 5.500 \text { r.p.m. } \\ & 4,1 \mathrm{~m} . \mathrm{daN} \end{aligned}$	$\begin{aligned} & \text { a } 5.750 \text { r.p.m. } \\ & 3,8 \mathrm{~m} . \mathrm{daN} \end{aligned}$	$\begin{gathered} \text { a } 5.750 \mathrm{r} . \mathrm{p} . \mathrm{m} . \\ 3,8 \mathrm{~m} . \mathrm{daN} \end{gathered}$
Par máximo ISO	(4 m.kg. DIN)	(4 m.kg. DIN)	(4, m.kg. DIN)
	a 3.500 r.p.m.	a 3.500 r.p.m.	a 3.500 r.p.m.

Refrigeración: Por aire impulsado.

Engrase: Bajo presión, alimentado por una bomba de aceite del tipo "EATON" montada en el extremo del árbol de levas.

- Cartucho filtrante incorporado en el interior de los motores M28/1 y M $28\left\{\begin{array}{l}\text { Francia: } 11.1969 \rightarrow 11.1970 \\ \text { España: } 2.1970 \rightarrow 6.1971\end{array}\right.$
- Cartucho filtrante exterior sobre los motores M 28/1 y M 28 $\left\{\begin{array}{l}\text { Francia: } 11.1970 \rightarrow \\ \text { España: } 6.1971 \longrightarrow\end{array}\right.$

Carburación: (Ver cuadro de la Operación A. 142-00)

- Carburante normalmente utilizado: gasolina del tipo "Super".
- Silencioso de admisión: Tipo de elemento seco intercambiable.

Encendido:

- Distribuidor en el extremo del árbol de levas, en la parte delantera del motor.
- Marca: DUCELLIER.
- Bujías: Ver notas técnicas correspondientes.
- Orden de encendido: 1-2.

Distribución:

- Arbol de levas por debajo del cigüeñal, piñón con corrección de holgura.
- Ovalado máximo del extremo de la leva del distribuidor $=0,02 \mathrm{~mm}$.

MOTORES A 53 y A 79/0
CORTE HORIZONTAL

CORTE TRANSVERSAL

MOTOR A 79/1
CORTE HORIZONTAL
A 10.3

CORTE TRANSVERSAL
A 10.1

MOTOR M 4
CORTE HORIZONTAL

CORTE TRANSVERSAL
A. 10-9

MOTORES M 28/1 Y M 28

(Vehículos fabricados hasta: $\left\{\begin{array}{l}\text { Francia: } 12.1969 \\ \text { España: } 2.1970\end{array}\right.$

CORTE TRANSVERSAL
A 10.6

NOTA: Relaciones volumétricas motores

Francia:	$9 / 1$
España:	$8,5 / 1$
Francia:	$8,5 / 1$
España:	$8,5 / 1$

MOTORES M 28/1 Y M 28

(Vehículos fabricados en Francia desde Diciembre 1969 hasta Noviembre 1970)
(Vehículos fabricados en España desde Febrero de 1970 hasta Junio de 1971)
CORTE HORIZONTAL
A. 10-2

CORTE TRANSVERSAL
A 10.6 a

MOTORES M 28/1 Y M 28

Vehículos fabricados a partir de: $\left\{\begin{array}{l}\text { Noviembre } 1970 \text { en Francia } \\ \text { Junio } 1971 \text { en España }\end{array}\right.$ CORTE HORIZONTAL

ESQUEMA DEL CIRCUITO DE ENGRASE
MOTORES A 53-A 79/0-M 4

ESQUEMA DEL CIRCUITO DE ENGRASE

 MOTORES A 79/1-M 28-M 28/1Vehículos fabricados hasta
\{ Noviembre 1969 en Francia
(Febrero 1970 en España

ESQUEMA DEL CIRCUITO DE ENGRASE MOTORES M 28/1 Y M 28

(Motores fabricados en Francia desde Diciembre de 1969 hasta Noviembre de 1970)
(Motores fabricados en España desde Febrero de 1970 hasta Junio de 1971)

ESQUEMA DEL CIRCUITO DE ENGRASE MOTORES M 28/1 Y M 28

(Motores fabricados en Francia a partir de Noviembre de 1970)
(Motores fabricados en España a partir de Junio de 1971)

II. PUNTOS PARTICULARES

Cárter motor:
Pares de apriete:

- Tuercas y tornillos de ensamblado de los medios cárteres 1,5 a 2 da Nm.- Tuercas de los apoyos del cigüeñal3,5 a $4,5 \mathrm{da} \mathrm{Nm}$.
- Tornillos de fijación del tamiz de aceite 0,3 a 0,5 da Nm .
- Tornillos de fijación de los soportes delanteros sobre el cárter 6 da Nm.
- Tapón de vaciado 3,5 a 4,5 da Nm.
- Espárragos de los apoyos del cigüeñal sobre el medio cárter 0,6 a $0,8 \mathrm{da} \mathrm{Nm}$.
- Espárragos de ensamblado de los medios cárteres 0,3 a 0,5 da Nm .

Cigüeñal - Bielas:

Volante:

- Alaveo máximo de la corona del motor de arranque
$0,3 \mathrm{~mm}$
- Sentido de montaje de la corona: entradas de los dientes lado caja de velocidades.
- Pares de apriete:
- Tornillos de fijación del volante (sustituir a cada desmontaje) 4 a $4,5 \mathrm{da} \mathrm{Nm}$.

Cilindros:

- Una sola clase de cilindros.

Pistones - Segmentos:

- Los ejes de los pistones se montan libres.
- Sentido de montaje de los pistones:
- Pistón que no lleva ninguna marca que indique el sentido del montaje (sin flecha):

Montaje indiferente

- Pistón con eje decalado que lleva una marca que indica el sentido de montaje (\longrightarrow o AV):

Segmentos:

La señal (o la marca del fabricante) debe estar dirigida hacia la parte alta del pistón.

Orden de montaje: (empezando por la parte alta del pistón).

1-Segmento de estanqueidad.
2 - Segmento rascador.
3 -Segmento de engrase.

OBSERVACION:

Desde Junio 1972 (Francia), los motores M 28 y M 28/1 son equipados de segmentos de engrase U-FLEX.

Culatas:

Pares de apriete:

- Tuercas de las culatas (orden de apriete "en frío": tuerca superior delantera - tuerca superior trasera - tuerca inferior). Roscar sin apretar definitivamente para que asiente la culata:
- 1. ${ }^{\text {er }}$ apriete

0,5 a 1 da Nm.

- 2. $^{\circ}$ apriete . 2 a 2,3 da Nm.
- Tuercas de las tapas de balancines 0,5 a $0,7 \mathrm{da} \mathrm{Nm}$.
- Tornillos y tuercas de los colectores admisión y escape
$1,9 \mathrm{da} \mathrm{Nm}$.
- Espárragos de culata sobre el cárter motor

0,4 a 0,6 da Nm.

- Espárragos de las tapas de balancines 0,4 a $0,6 \mathrm{da} \mathrm{Nm}$.
- Tornillos de las bridas de unión del escape $1,9 \mathrm{da} \mathrm{Nm}$.

Válvulas:

Válvulas rotativas (TEVES) sobre motores: A 79/0 - A 79/1 - M 28/1 - M 28.

	Válvulas	Angulo	ϕ cabeza (mm.)	ϕ vástago (mm.) (bajo la cabeza)	Longitud (mm.)
$\begin{gathered} \text { Motores } \\ \text { A } 53 \text { - A } 79 / 0 \end{gathered}$	Admisión	120°	39	8	$90,8 \pm 0,25$
	Escape	90°	32	8,5:0,035	$88,65 \pm 0,25$
Motor$\text { A } 79 / 1$	Admisión	120°	39	$\begin{array}{rr} \\ 8 & -0,005 \\ -0,035\end{array}$	89,57 $+0,45$ $-0,25$
	Escape	90°	34	8,5-0,020	88,18 $+0,45$
Motor M 4	Admisión	120°	39	8	$88,8 \pm 0,25$
	Escape	90°	34	8,5-0,035	$86,5 \pm 0,25$
Motores M 28/1-M 28	Admisión	120°	40	$8 \begin{array}{r} \\ 8\end{array} \cdot 0,020$	88,5 $\begin{array}{r}+0,45 \\ -0,25\end{array}$
	Escape	90°	34	8,5-0,035	$86,95+0,45$ $-0,25$

Muelles de válvula:

Motores	Muelles		Longitud libre	Longitud bajo carga	Carga en $\mathbf{k g}$.	Longitud bajo carga	Carga en $\mathbf{k g}$.
	Hasta Septiembre 1963	Exterior	38 mm .	24 mm .	38 a 42	31 mm .	18 a 21
A 53		Interior	28 mm .	$14,5 \mathrm{~mm}$.	7,4 a 8,3	$21,5 \mathrm{~mm}$.	3,6 a 4,4
A 79/0	A partir Septiembre 1963	Exterior	$38,6 \mathrm{~mm}$.	24,4 mm.	47,3 a 48,3	$31,7 \mathrm{~mm}$.	21,2 a 24,6
M 4		Interior	28,8 mm.	15 mm .	9 a 10	22,3 mm.	3,7 a 4,7

Motores	Muelles	Longitud bajo carga	Carga en kg.	Longitud bajo carga	Carga en kg.	Sentido de enrollamiento
A 79/1	Exterior	$31,4 \mathrm{~mm}$.	$28 \pm 1,5$	24,15 mm.	$42,5 \pm 2$	a derechas
M 28/1	Interior	24,4 mm.	21 ± 1	$17,15 \mathrm{~mm}$.	$25 \pm 1,5$	a izquierdas
M 28	Muelle único	$31,4 \mathrm{~mm}$.	$37 \pm 2,5$	24,15 mm.	$66 \pm 3,5$	indiferente

Asientos y guías:

Mandrinado de las guías de válvulas:

ADMISION

ESCAPE

Motores A 53-A 79/0:

- admisión: $\phi=8 \quad \begin{gathered}+0,025 \\ 0\end{gathered} \mathrm{~mm}$.
- escape: $\quad \phi=8,5 \begin{gathered}+0,025 \\ 0\end{gathered} \mathrm{~mm}$.

Motor A 79/1:

- admisión: $\quad \phi=8 \quad \begin{aligned} & +0,020 \\ & \\ & \\ & +0,005\end{aligned} \mathrm{~mm}$.
- escape: $\quad \phi=8,5+0,010 \mathrm{~mm}$.

Motor M 4:

- admisión: $\quad \phi=8 \quad \begin{array}{ll} & +0,040 \\ & +0,025\end{array} \mathrm{~mm}$.
- escape: $\quad \phi=8,5^{+0,050} \mathrm{~mm}$.

Motores M 28/1-M 28:

- admisión: $\quad \phi=8 \quad \begin{array}{ll} & +0,030 \\ & +0,005\end{array} \mathrm{~mm}$.
- escape: $\quad \phi=8,5 \begin{aligned} & +0,015 \\ & \\ & -0,010\end{aligned} \mathrm{~mm}$.

Anchura del asiento " p ":

- Admisión
$1,45 \mathrm{~mm}$. máximo
- Escape $1,80 \mathrm{~mm}$. máximo
- Flecha máxima de las varillas de los balancines
$0,2 \mathrm{~mm}$. máximo

Distribución:

Arbol de levas:

- Holgura lateral no regulable . 0,04 a 0,09 mm.

Reglaje teórico de la distribución:

Reglaje teórico con una holgura de $0,53 \mathrm{~mm}$. entre el balancín y la válvula de admisión y una holgura de 0,43 mm . entre el balancín y la válvula de escape.

	Motores A 53 y M 4	Motor A 79/0
Avance apertura de admisión	3°	12°
Retraso cierre de admisión	45°	54°
Avance apertura de escape	45°	55°
Retraso cierre de escape	11°	21°

Reglaje teórico con una holgura de 1 mm . entre el balancín y la válvula de admisión y de escape

	Motor A 79/1	Motores M 28/1 y M 28
Retraso apertura de admisión	$2^{\circ} 5^{\prime}$	$0^{\circ} 5^{\prime}$
Retraso cierre de admisión	$41^{\circ} 30^{\prime}$	$49^{\circ} 15^{\prime}$
Avance apertura de escape	$35^{\circ} 55^{\prime}$	$35^{\circ} 55^{\prime}$
Retraso cierre de escape	$3^{\circ} 30^{\prime}$	$3^{\circ} 30^{\prime}$

Pares de apriete:

- Tuercas de reglaje de los balancines

1,4 a $1,9 \mathrm{da} \mathrm{Nm}$.

Circuito de engrase:

- Calidad del aceite

TOTAL Altigrade GTS 20 W 50 - GT 20 W 40

- Capacidad de los cárteres:

	Tipo de motor y capacidad de aceite				
	A 53	A 79/0	A 79/1	M 4	M 28/1-M 28
- Después de un vaciado	2 litros	2,3 litros	2,3 litros	2,5 litros	2,4 litros
- Después del desmontaje de la tapa de culatas	2,2 litros	2,5 litros	2,5 litros	2,85 litros	2,5 litros
y del cartucho.					2,7 litros
- Entre el mínimo y el máximo	0,5 litros				

- Presión del aceite a 80° :
- Motores A 53 - A 79/0 - M 4
- Motor A 79/1
- Motores M 28/1 - M 28

2,5 a 3,1 bares a 4.000 r.p.m.
4 a 5 bares a 6.000 r.p.m.

- Tarado del manocontacto

Cartucho filtrante:

Motores M 28 y M 28/1

(desde Noviembre de 1969 hasta Noviembre de 1970 en Francia)
(desde Febrero de 1970 hasta Junio de 1971 en España)

- Filtro de aspiración con cartucho filtrante de "by-pas"* incorporado.

Motores M 28 y M 28/1 (a partir de Junio de 1971 en España, y de Noviembre de 1970 en Francia).

- Nuevo circuito de engrase con "by-pas"* incorporado (desmontable) en el emplazamiento de la gúa de posicionamiento del apoyo delantero del árbol de levas (medio cárter derecho).
- Cartucho filtrante exterior con "by-pas"* incorporado.
*Doble paso.

Refrigerador:

Motores A $53-\mathrm{A} 79 / 0$.	7 elementos
Motor M 4	9 elementos
Motor A 79/1	6 elementos (aluminio)
Motores M $28 / 1$ y M 28	9 elementos (aluminio)

Bomba de aceite:

\qquad

Pares de apriete:

To	N.
- Tornillo racor del refrigerador (modelo antiguo)	2,7 a $2,9 \mathrm{da} \mathrm{Nm}$.
- Tornillo racor del refrigerador (modelo nuevo)	1 a $1,4 \mathrm{da} \mathrm{Nm}$.
- Tornillo de fijación de la chapa antiemulsión	Apriete moderado (LOCTITE N. $\left.{ }^{\circ} \mathrm{GX} 01.459 .01 \mathrm{~A}\right)$
- Tornillo de fijación del tamiz de aceite	0,3 a 0,5 da Nm .
- Tornillo de fijación de la tapa de la bomba de aceite	1,3 a $1,5 \mathrm{da} \mathrm{Nm}$.
- Tornillo de fijación del refrigerador	$1,9 \mathrm{da} \mathrm{Nm}$.
- Tapón obturador del circuito de engrase	2,7 a 3 da Nm .
- Tapón de vaciado	3,5 a $4,5 \mathrm{da} \mathrm{Nm}$.

Ventilador:

Número de aspas:

[^1]
REGLAJE DE LOS BALANCINES

4278

4. Poner en funcionamiento el motor y verificar la estanqueidad de las juntas.

3986

5. Con el motor caliente, regular al ralenti, si es necesario, (750 a 800 r. p. m.).
6. En el caso de un embrague centrifugo, verificar el reglaje del freno de ralenti. (El tiempo de acción debe ser de 1 a 2 segundos). Regular este último si es necesario.
7. Poner a nivel el aceite motor.

This Page Is Intentionally Blank

CONTROL DEL CALADO DE LA DISTRIBUCION

Para efectuar esta operación, es preciso que el motor esté frio.

1. Colocar un recipiente para recoger el aceite y desmontar la tapa de culatas del cilindro izquierdo.
2. Girar el motor para poner lá válvula de admisión en su máxima apertura.
Regular el juego del balancín de escape a:

- Motor A 53 $1,95 \mathrm{~mm}$.
- Motores A 79/0 y M4 2,40 mm.
- Motor A 79/12,40 mm.
- Motores M28/1 y M28 2 mm .

3. Introducir una varilla de $\varnothing=6 \mathrm{~mm}$. (MR. $630-51 / 15$) en el orificio del cárter motor, lado izquierdo, previsto para el calado del encendido.
Girar el motor en el sentido inverso al sentido de marcha hasta que la varilla penetre en el orificio del volante.
4. Medir el juego en el balancín de la válvula de escape. Si la distribución está bien calada, este juego tiene que estar comprendido entre:

- Motor A 53
0,04 y $0,83 \mathrm{~mm}$.
Motores A 79/0 y M 4 0,06 y $0,80 \mathrm{~mm}$.
Motor A 79/1 0,09 y $0,88 \mathrm{~mm}$.
Motores M28/1 y M28 0,03 y $0,75 \mathrm{~mm}$.

Sobre algunos motores A 79/1 (435 cm^{3}), si no es posible obtener un juego de $2,40 \mathrm{~mm}$. entre el balancin y la válvula de escape.
Operar como se indica a continuación:
a) Girar el motor para poner la válvula de admisión en su apertura máxima y regular el juego del balancín de escape a $1,50 \mathrm{~mm}$.
b) Introducir la varilla MR. 630-51/15 en el orificio del cárter motor, lado izquierdo, previsto para el calado del encendido.
c) Girar el motor en el sentido inverso de marcha hasta que la varilla penetre en el orificio del volante del motor.
d) Hacer una señal "b" con una tiza en un diente de la corona de arranque y otra señal "a" en el carter de motor, una en frente de la otra.
Desmontar la varilla de calado.
e) Girar el motor en el sentido normal de marcha, unos tres dientes.
Medir el juego en el balancín de la valvula de escape. Si la distribución está bien calada, este juego tiene que estar comprendido entre: 0,05 y $0,65 \mathrm{~mm}$.

5. Regular los balancines:

El reglaje se hace en frío.
Regular una válvula cuando la vàlvula correspondiente del cilindro opuesto esté en plena apertura:

$$
\begin{array}{ll}
\text { Admisión } & =0,20 \mathrm{~mm} \\
\text { Escape } & =0,20 \mathrm{~mm}
\end{array}
$$

6. Montar las tapas de culata:

Comprobar que no existe ninguna aspereza en los planos de la junta.

Comprobar el estado de la junta que va pegada en la tapa de culata.

Montar:

- las tapas de culata,
- las juntas de goma (1) y las arandelas planas (2) (en las tapas que van equipadas con ellas),
- las tuercas ciegas (3).

Apretar las tuercas (3) de 0,5 a 0,7 da Nm.

Un posicionamiento defectuoso de las juntas o un mal apriete de las tuercas (3) pueden provocar la pérdida total del aceite motor.
7. Poner el motor en marcha.

Comprobar la estanqueidad de las juntas de las tapas de culata.

Establecer el nivel del aceite motor.

I. REGLAJE DE LOS CARBURADORES

(Carburadores sin sistema de antipolución)

7811

REGLAJE DEL RALENTI

1. Reglaje del tornillo de riqueza:

a) Con el motor a su temperatura de funcionamiento, regular el tornillo (3) de tope de mariposa de los gases para obtener un régimen de:
Motor A 53 : 500 a 550 r.p.m.
Motor A 79/0 : 650 r.p.m.
Motor A 79/1 : 650 r.p.m.
Motor M 4 : 500 a 600 r.p.m.
Motor M 28/l : 650 r.p.m.
b) Roscar lentamente el tornillo de riqueza (2) hasta que el motor funcione, irregularmente (riesgo de que se pare). En este momento, desenroscar este tornillo:
Motor A 53 : $1 / 2$ vuelta
Motor A 79/0: 1/4 de vuelta
Motor A 79/1 : $1 / 4$ de vuelta
Motor M $4: 1 / 2$ vuelta
Motor M 28/1: $1 / 2$ vuelta
Motor M 28 : $1 / 3$ de vuelta
lo que proporciona una riqueza correcta.

2. Reglaje del régimen:

a) Motores equipados de un embrague clásico:

Roscar el tornillo (3) de tope de mariposa para obtener un régimen:
Motor A 53 : 600 a 650 r.p.m.
Motor A 79/0: 800 a 850 r.p.m.
Motor A 79/I : 800 a 850 r.p.m.
Motor M $4: 750 \pm 50$ r.p.m. $\left\{\begin{array}{l}(\mathrm{AYA} 3 \text { y AM Francia) } \\ (\text { Dyane España) }\end{array}\right.$
Motor M 4 : 650 a 700 r.p.m. (AK)
Motor M 28/1: 750 a 800 r.p.m.
Motor M 28 : 750 a 800 r.p.m.
b) Motores equipados de un embrague centrifugo:

Roscar progresivamente el tornillo (3) de tope de mariposa hasta que el tambor de embrague automático empiece a ser arrastrado, y aflojar este tornillo 1/8 de vuelta.
3. Reglaje del freno de ralenti:
(Motores con embrague centrifugo)
a) Asegurarse que la palanca (1) del freno de ralenti se desplaza suavemente y que la varilla (4) de mando del acelerador no toca a ningún órgano en su desplazamiento.
b) Acelerar a tope y soltar el acelerador.

Comprobar el tiempo pasado entre el momento en que se solicita la palanca del freno de ralenti y el momento en que cesa su accion.
Este tiempo debe estar comprendido entre 1. y 2 segundos. En caso contrario, desplazar la patilla de enganche del muelle de retroceso del mando del acelerador, para obtener esta condición.
4. Reglaje del mando del acelerador:
(Motores M 28/I y M 28 -carburador SOLEX 26/35 doble cuerpo).

Apretar a fondo el pedal del acelerador intercalando una galga de 5 mm . de espesor entre el pedal y la alfombra de suelo. Las mariposas deben estar en plena apertura y debe existir una holgura de $1,5 \mathrm{~mm}$., entre el terminal (5) de la varilla del acelerador y pasador (8). Roscar o desenroscar la varilla (7) en el limitador de tensión (6) para

This Page Is Intentionally Blank

Tipo de motor	Tipo de vehículo	Fecha de fabricación	Tipo de carburador	Ref. sobre carburador	
				Embrague	
				clásico	centrífugo
$\begin{gathered} \text { A } 53 \\ \left(425 \mathrm{~cm}^{3}\right) \end{gathered}$	$A Z$ (serie A y $A M$)	$3 / 1963 \rightarrow 2 / 1970$	SOLEX 28 IBC**SOLEX 28 CBI0ZENITH $28 \mathrm{IN}^{*}$ZENITH 28 IN 4	32^{1}	30^{1}
	AZU (serie A)	3/1963 \rightarrow 8/1967		Z 32	Z 30
$\begin{gathered} \text { A } 79 / 0 \\ \left(425 \mathrm{~cm}^{3}\right) \end{gathered}$	AZU (serie A)	8/1967 \longrightarrow 8/1972	SOLEX 32 PICS* SOLEX 32 PCIS	38	
	AYA (serie A y AM)	8/1967 \longrightarrow 3/1968		38	39
$\begin{gathered} \text { A } 79 / 1 \\ \left(435 \mathrm{~cm}^{3}\right) \end{gathered}$	AYA 2 (serie A y AM)	$3 / 1968 \rightarrow 2 / 1970$	SOLEX 34 PICS 4^{*} SOLEX 34 PCIS 4	101	102
	AYA 2 (serie A y AM)	2/1970 \rightarrow /1972	SOLEX 34 PICS 5* SOLEX 34 PCIS 5	101^{1}	$102{ }^{1}$
	AZ (serie A 2)				
	AYA 2 (serie A y AM)	8/1972 \longrightarrow 9/1975	SOLEX 34 PICS 6*		122
	AZ (serie A 2)				
	AZU (serie B)			121	
	AK (serie AP) (AZU)	9/1975 \rightarrow 7/1976	SOLEX 34 PCIS 6	173	
	$A Z$ (serie KB)			173	174
	AK (serie AP) (AZU)	7/1976 \rightarrow /1978	SOLEX 34 PICS 10	191	
	- $A Z$ (serie KB)	7/1976 \rightarrow 9/1979	SOLEX 34 PCIS 10	191	192
$\begin{gathered} \text { M 4 } \\ \left(602 \mathrm{~cm}^{3}\right) \end{gathered}$	AYA 3 (serie A y AM)	1/1968 \rightarrow 10/1968	$\begin{aligned} & \text { SOLEX } 40 \text { PICS } 3^{*} \\ & \text { SOLEX } 40 \text { PCIS } 3 \end{aligned}$	44^{3}	45^{3}
	AK	$\rightarrow 5 / 1968$	SOLEX 30 PICS		
	AM (AMI 6)	9/1963 $\longrightarrow 4 / 1964$	$\begin{aligned} & \text { SOLEX } 40 \text { PICS* } \\ & \text { SOLEX } 40 \text { PCIS } \end{aligned}$	44	45
		$4 / 1964 \longrightarrow 4 / 1967$	SOLEX 40 PICS 2* SOLEX 40 PCIS 2	44^{1}	45^{1}
		$4 / 1967 \longrightarrow 5 / 1968$	SOLEX 40 PICS 3^{*} SOLEX 40 PCIS 3	44^{2}	45^{2}
$\begin{gathered} \text { M 28/1 } \\ \left(602 \mathrm{~cm}^{3}\right) \end{gathered}$	AYB (serie A y AM)	10/1968 \rightarrow 1/1970	SOLEX 34 PICS 4*	103	104
	AY (serie CA)			103	104
	AK (serie B)	5/1968 \longrightarrow 1/1970	SOLEX 34 PCIS 4	103	
	AYB (serie A y AM)	5/1968 \longrightarrow 1/1970	SOLEX 34 PICS 5^{*} SOLEX 34 PCIS 5	$103{ }^{1}$	104^{1}
	AY (serie CA)	1/1970 \rightarrow 8/1972		103^{1}	104^{1}
	AK (serie B)	1/1970 \rightarrow 7/1970		103^{1}	
	- AK (serie AK)	7/1970 \rightarrow 8/1972		$103{ }^{1}$	
	- $A Z$ (serie KA)	2/1970 \rightarrow 8/1972		103^{1}	$104{ }^{1}$

Tipo de motor	Tipo de vehículo	Fecha de fabricación	Tipo de carburador	Ref. sobre carburador	
				Emb clásico	rague centrífugo
$\begin{gathered} \mathrm{M} \mathrm{28/1} \\ \left(602 \mathrm{~cm}^{3}\right. \text {) } \\ \text { (continuación) } \end{gathered}$	AY (serie CA)	8/1972 \rightarrow 2/1975	SOLEX 36 PICS 6*	123	124
	AK (serie AK)			123	
	AZ (serie KA)			123	124
	AY (serie CA)	2/1975 \longrightarrow 10/1975	SOLEX 34 PCIS 6	164	165
	AK (serie AK)			164	
	AZ (serie KA)			164	165
	AY (serie CA)	10/1975 \rightarrow 7/1976		175	176
	AK (serie AK)			175	
	$A Z$ (serie KA)			175	176
	AY (serie CA)	7/1976 \rightarrow /1978	SOLEX 34 PICS 10 * SOLEX 34 PCIS 10	193	194
	AK (serie AK)			193	
	$A Z$ (serie KA)			193	194
	- $A Z$ (serie KA)	7/1978 \rightarrow 7/1980	SOLEX 26/35 CSIC* SOLEX 26/35 SCIC	197	198
	- AZ (serie KA)	7/1980 \longrightarrow		225	226
	- AY (serie CA)	7/1978 \rightarrow 7/1980		197	198
	- AY (serie CA)	7/1980 \longrightarrow		225	226
$\begin{gathered} \text { M } 28 \\ \left(602 \mathrm{~cm}^{3}\right) \end{gathered}$	AY (serie CB)	2/1970 \rightarrow 6/1970		110^{2}	111^{2}
	AY (serie CB)	6/1970 \longrightarrow 8/1972		113^{1}	114^{1}
	$A Y$ (serie CB)	8/1972 \rightarrow 10/1975		127	128
	AY (serie CB)	10/1975 $\rightarrow 7 / 1976$		179	180
	$A Y$ (serie CB)	7/1976 \rightarrow 7/1977		195	196
	- $A Y$ (serie CB)	7/1977 \longrightarrow 7/1980		197	198
	- AY (serie CB)	7/1980 \longrightarrow		225	226
	- AY (serie CD)	2/1978 \rightarrow 7/1980		197	
	- AY (serie CD)	7/1980 \longrightarrow		225	
	AM (AMI 6)	5/1968 \rightarrow 11/1968		110	111
		11/1968 \longrightarrow 3/1969		110^{1}	111^{1}
	AM 3 (AMI 8)	3/1969 \longrightarrow 7/1969		110^{1}	111^{1}
	AM (AMI 8)(series JA - JB - JC)	7/1969 \longrightarrow 8/1972		110^{1}	111^{1}
		8/1972 \rightarrow 10/1975		125	126
		10/1975 \rightarrow /1976		177	178
		7/1976 \longrightarrow 9/1978		197	198

[^2]This Page Is Intentionally Blank

CARBURADORES	$\begin{gathered} 28 \text { IBC }\left(32^{1}\right) \\ \text { SOLEX } \\ 28 \operatorname{CBI}\left(30^{1}\right) \end{gathered}$	$\begin{gathered} 28 \text { IN (Z 32) } \\ \text { ZENITH } \\ 28 \text { IN } 4 \text { (Z 30) } \end{gathered}$	CARBURADORES SOLEX	30 PICS	32 PICS (38) 32 PCIS (39)	40 PICS (44) 40 PCIS (45	40 PICS $2\left(44^{1}\right)$ 40 PCIS $2\left(45^{1}\right)$ 40 PICS $3\left(44^{2-3}\right)$ 40 PCIS $3\left(45^{2-3}\right)$
Difusor	22	22	Difusor	26	28	32	32
Surtidor principal	125	132	Surtidor principal	140	150	165	170
Ajuste de automaticidad	E 1		Ajuste de automaticidad	$A B$	215	$A B$	AC
Surtidor de stárter	80		Surtidor de ralentí	47,5	55	55	50
Surtidor de ralentí	42,5	45	Inyector de bomba		40	40	40
Calibrador de aire de ralentí		160	Asiento de aguja .	$1,3$	$1,3$	1,6	1,3
Asiento de aguja .	1,2	1,25	Flotador	$5,7 \mathrm{gr}$.	5,7 gr.	5,7 gr.	$5,7 \mathrm{gr}$.

CARBURADORES SOLEX	34 PICS 4 (101) 34 PCIS 4 (102) 34 PICS 5 (101 ${ }^{1}$) 34 PCIS 5 (102 ${ }^{1}$)	34 PICS 4 (103) 34 PCIS 4 (104) 34 PICS 5 (103^{1}) 34 PCIS 5 (104^{1})	34 PICS 6 (121) 34 PCIS 6 (122)	34 PICS 6 (123) 34 PCIS 6 (124) 34 PICS 6 (164) 34 PCIS 6 (165)	34 PICS 6 (173) 34 PCIS 6 (174) 34 PICS 10 (191) 34 PCIS 10 (192)	34 PICS 6 (175) 34 PCIS 6 (176) 34 PICS 10 (193) 34 PCIS 10 (194)
Difusor	28	28	28	28	28	28
Surtidor principal	155	160	155	165	155	165
Ajuste de automaticidad	AB	AB	AB	AC	AB	AC
Surtidor de ralentí	40	42,5	40	42,5	35	40
Surtidor de progresión	55	55	50	52,5	48	45
Inyector de bomba	35	40	35	40	37,5	40
Asiento de aguja	1,3	1,3	1,3	1,3	1,3	1,3
Flotador	$5,7 \mathrm{gr}$.	5,7 gr.	5,7 gr.	$5,7 \mathrm{gr}$.	5,7 gr.	$5,7 \mathrm{gr}$.

CARBURADORES SOLEX DOBLE CUERPO 26/35 CSIC* y SCIC	Ref. 110*-111		$\text { Ref. } \begin{aligned} & 110^{1 *}-111^{1} \\ & 110^{2 *}-111^{2} \\ & 113^{1 *}-114^{1} \end{aligned}$		Ref. $\begin{aligned} & 125^{*}-126 \\ & 127^{*}-128\end{aligned}$		$177^{*}-178$Ref. $179^{*}-180$$197^{*}-198$$195^{*}-196$		Ref. 225*-226	
	Primer cuerpo	Segundo cuerpo	Primer cuerpo	Segundo cuerpo	Primer cuerpo	Segundo cuerpo	Primer cuerpo	$\begin{gathered} \text { Segundo } \\ \text { cuerpo } \end{gathered}$	Primer cuerpo	Segundo cuerpo
Difusor Surtidor principal	21 120	24 60	21 125	24 75	$\underset{(1 / 73 \xrightarrow{21}+)}{\substack{21 \\{ }^{*} 125}}$	24 82,5	21 120	24 70	18 102,5	$\begin{gathered} 26 \\ 87,5 \end{gathered}$
Surtidor de ralentí	50		50		40		40		39	
Ajuste de automaticidad	1 F 1	2 H 1	1 F 1	2 AA	1 Fl	2 AA	1 F 2	2 AA	1 F 2	2 AA
Inyector de bomba	40		40		40		40		35	
Asiento de aguja (con muelle)	1,7		1,7		1,7		1,7 (con bolas)		1,7 (con bolas)	

* Carburador sin freno de ralentí (embrague normal) ${ }^{* *} 117,5(\rightarrow 1 / 73$).

This Page Is Intentionally Blank

II. REGLAJES DE LOS CARBURADORES

(Carburación con sistema de antipolución)
$10 ? 52$

76.768

7829

CARBURADORES 34 PICS 6 y PCIS 6 (sin sistema de antipolución).
No variar el tornillo (3) de tope de mariposa, regulado con un micrometro por el fabricante.

CARBURADORES 34 PICS 10 y PCIS 10 (con sistema de antipolución).
Se suprime el tornillo de aire y el régimen de ralentí, se regula por el tornillo de tope de mariposa.
Estos carburadores van equipados de origen con un obturador de inviolabilidad (negro) sobre el tornillo de riqueza. En el caso de intervención, montar un obturador (blanco) vendido por el Departamento de Piezas de Recambio.

Condiciones de reglaje de ralenti en proporciones de co y CO^{2} :
Motor "suelto", balancines y encendido bien regulados.

- Aceite de motor de $70^{\circ} \mathrm{C}$ a $80^{\circ} \mathrm{C}$ durante el reglaje.

Régimen de ralenti:

Motores con embrague clásico:
800 ± 50 r.p.m. 34 PICS 6 (\sin sistema de antipolución).
$800+50$ r.p.m. 34 PICS 10 (con sistema de antipolución).

Motores con embrague centrifugo:
50 r.p.m. por encima del comienzo de roce.
Proporciones de $\mathbf{C O}$ y $\mathbf{C O}^{2}$ para los regimenes citados:
CO:
0,8 \% a 1,6 \% para motores de $602 \mathrm{~cm}^{3}$
CO. - $1,8 \%$ a $2,5 \%$ para motores de $435 \mathrm{~cm}^{3}$
CO 2 : $>9 \%$ para motores de $602 \mathrm{~cm}^{3}$ y de $435 \mathrm{~cm}^{3}$
Reglaje del régimen y de su proporción de $\mathbf{C O}$ y $\mathbf{C O}^{2}$:
Sobre un carburador (con sistema de antipolución) 34 PICS 6 y PCIS 6:

- Actuar en el tornillo (1) para obtener el régimen de ralenti.
- Regular la riqueza con el tornillo (2) para obtener las proporciones de CO y CO^{2} correctas.

NOTA: Sobre los carburadores con freno de ralenti: actuar como se ha indicado anteriormente, y después con el tornillo (1) llevar el régimen al limite de arrastre del tambor de embrague (roce) y después dejar caer el régimen unas 50 r.p.m.
Regular el CO y CO^{2} a este régimen (tornillo (2)).
Sobre los carburadores con sistema de antipolución 34 PICS 10 y PCIS 10:
El mismo proceso que el descrito anteriormente, excepto en lo que concierne a la acción sobre el régimen, que se hace con el tornillo (6) de tope de mariposa del primer cuerpo. La riqueza se regula con el tornillo (5) (CO y CO^{2}).
Reglaje del freno de ralenti (embrague centrifugo):
Acelerar plenamente, y después soltar el acelerador. Observar el tiempo transcurrido entre el momento de ser solicitada la palanca del freno de ralentí (4) y el momento que cesa su acción. Este tiempo tiene que ser de 1,5 a 2 segundos. Si no desplazar la patilla de enganche (7) sobre la varilla del

CARBURADORES 26/35 CSIC y SCIC.

1. EN LOS CARBURADORES DE LA SERIE CIT 110-111-113-114-125-126-127-128 $(\rightarrow$ 10/1975).
No intervenir en los tornillos (1) y (2) del tope de mariposa del primer y segundo cuerpo.
2. EN LOS CARBURADORES DE LA SERIE CIT 177-178-179-180 (10/1975 \longrightarrow) ó 195-196-197-198 (7/1976 \rightarrow):
No intervenir en el tornillo (7) de tope de mariposa del segundo cuerpo.
Los carburadores de la serie CIT 195-196-197198 van equipados de origen con un obturador de inviolabilidad (negro) en el tornillo de riqueza. En el caso de una intervención, colocar un obturador (blanco) vendido por el Departamento de Piezas de Recambio.

Condiciones de reglaje del ralentí con las proporciones de CO y CO^{2} :

- Motor suelto, balancines y encendido bien regulados.
- Aceite de motor de 70° a $80^{\circ} \mathrm{C}$ durante el reglaje.

Régimen de ralentí:
Motores con embrague clásico:
$750+{ }_{0}^{50}$ r.p.m. (carburadores montados $\longrightarrow 7 / 1976$).
$800+{ }_{0}^{50}$ r.p.m. (carburadores montados $7 / 1976 \rightarrow$).
Motores con embrague centrífugo:
50 r.p.m. por debajo del comienzo del tambor de embrague.

Proporciones de CO y $\mathrm{CO}^{\mathbf{2}}$ para los regímenes dados anteriormente:
Proporción de óxido de carbono (CO): 0,8 \% a 1,6 \%. Proporción de gas carbónico $\left(\mathrm{CO}^{2}\right):>9 \%$.

Estas proporciones se dan para una temperatura ambiente comprendida entre 15° y $30^{\circ} \mathrm{C}$.

Reglaje del régimen y de las proporciones de $\mathbf{C O}$ y $\mathbf{C O}^{\mathbf{2}}$: En los carburadores (\rightarrow 10/1975):
Actuar en el tornillo (3) para obtener el régimen de ralentí correspondiente.
Regular la riqueza con el tornillo (4) para obtener las proporciones de CO y CO^{2} correctas.
Estas dos operaciones tienen que hacerse simultáneamente a la vez que son necesarias.
NOTA: En los carburadores con freno de ralentí: actuar como se ha indicado anteriormente y después con el tornillo (3), llevar el régimen hasta el límite de arrastre del tambor de embrague (rozado) y después bajar en 50 r.p.m. el régimen.
Regular el CO y CO^{2} a este régimen (tornillo (4)).
En los carburadores (10/1975 \rightarrow):
El mismo proceso que en los anteriores, excepto en lo que concierne a la regulación del régimen que se hace con el tornillo (6) del toje de mariposa del primer cuerpo. Riqueza regulada con el tornillo (5) (CO y CO^{2}).

Reglaje del freno de ralentí (embrague centrífugo):

Acelerar a fondo y después soltar el acelerador.
Observar el tiempo transcurrido entre el momento en el que la palanca del freno de ralentí es solicitada y el momento en el que cesa su acción. Este tiempo tiene que ser de 1 a 2 segundos.
Elegir la ranura de enganche de la varilla de reglaje en el silencioso de admisión para satisfacer esta condición.

4700

Reglaje del flotador:

Desmontar la tapa del carburador y volverla.
Medir la cota entre el eje del flotador y el plano de la junta de tapa (con la junta colocada).

Esta cota tiene que ser de: $\mathbf{h}=\mathbf{1 8} \mathbf{~ m m}$. y sensiblemente igual para cada flotador (separación admitida $=1 \mathrm{~mm}$.).

Si no, actuar sobre la lengüeta de apoyo.

\diamond Reglaje del mando del acelerador: (mando por cable):

Accionando el pedal del acelerador, poner la (o las) mariposa(s) del carburador en la posición de plena apertura.

La distancia entre el pedal y el piso tiene que ser de 5 mm .

Esta cota se obtiene por el desplazamiento de la varilla A en las gargantas del tope de funda \mathbf{B}.

En estas condiciones, comprobar que existe un juego \mathbf{J}, tal que $\mathbf{J}=\mathbf{2} \mathbf{~ m m}$. mínimo, muelle con las espiras sin juntar.

CUADRO DE CARBURADORES

CARBURADORES	$\begin{gathered} \text { SOLEX } \\ 28 \text { IBC }\left(32^{1}\right)^{*} \\ 28 \mathrm{CBI}\left(30^{1}\right) \end{gathered}$	ZENITH 28 IN (Z 32)* 28 IN 4 (Z 30)	CARBURADORES SOLEX	$\begin{gathered} 30 \text { PICS (42) } \\ 30 \text { PCIS (43) } \end{gathered}$
Difusor	22	22	Difusor	26
Surtidor principal	125	132	Surtidor principal	140
Ajuste de automaticidad	E 1		Ajuste de automaticidad	$A B$
Surtidor de stárter	80		Surtidor de ralentí	47,5
Surtidor de ralentí	42,5	45	Asiento de aguja	1,3
Calibrador de aire de ralentí		160	Flotador	$5,7 \mathrm{gr}$.
Asiento de aguja	1,2	1,25		

CARBURADORES SOLEX	$\begin{aligned} & 40 \text { PICS (44)* } \\ & 40 \text { PCIS (45) } \end{aligned}$	$40 \text { PICS } 3\left(44^{3}\right)^{*}$ $40 \text { PCIS } 3\left(45^{3}\right)$	$\begin{aligned} & 34 \text { PICS } 4 \text { (103) } \\ & 34 \text { PCIS } 4 \text { (104) } \end{aligned}$	34 PICS 6 (123) 34 PCIS 6 (124) 34 PICS 6 (164) 34 PCIS 6 (165)	34 PICS 6 (175) 34 PCIS 6 (176) 34 PICS 10 (193) 34 PCIS 10 (194)
Difusor	32	32	28	28	28
Surtidor principal	165	170	160	165	165
Ajuste de automaticidad	AB	AC	AB	AC	AC
Surtidor de ralentí	55	50	42,5	42,5	40
Surtidor de progresión			55	52,5	45
Inyector de bomba	40	40	40	40	40
Asiento de aguja	1,6	1,3	1,3	1,3	1,3
Flotador	5,7 gr.	5,7 gr.	5,7 gr.	$5,7 \mathrm{gr}$.	$5,7 \mathrm{gr}$.

CARBURADORES SOLEX DOBLE CUERPO	Refere	${ }^{1 * *-111^{1}}$	Refere	***-126	Referen	$\begin{aligned} & 7^{*}-178 \\ & 9^{*}-180 \\ & 7^{*}-198 \\ & 5^{*}-196 \end{aligned}$	Refere	5*-226
26/35 CSIC* y SCIC	Primer cuerpo	Segundo cuerpo						
Difusor	21	24	21	24	21	24	18	26
Surtidor principal	125	75	125	82,5	120	70	102,5	87,5
Surtidor de ralentí	50		40		40		39	
Ajuste de automaticidad	1 F 1	2 AA	1 F 1	2 AA	1 F 2	2 AA	1 F 2	2 AA
Inyector de bomba	40		40		40		35	
Asiento de aguja (con muelle)	1,7		1,7		1,7 (de bolas)		1,7 (de bolas)	

* Carburador \sin freno de ralent (embrague normal).

CORTES ESQUEMATICOS

1. CARBURADORES SOLEX 28 IBC (Ref. 32^{1}) y 28 CBI (Ref. 30^{1}).

Nomenclatura:

a	: Ajuste de automaticidad
F	: Flotador
$\mathrm{Gg}:$	Surtidor de alimentacion
Gs	$:$ Surtidor de starter
g	: Surtidor de ralenti
K	:

[^3]2. CARBURADORES SOLEX 30 PICS - 32 PICS (Referencia 38) y 32 PCIS (Referencia 39).
A. 14.14

3. CARBURADORES SOLEX 40 PICS - 40 PCIS (todo tipo).
A. $14-12$

Nomenclatura:

$\mathrm{a}:$: Ajuste de automaticidad	$\mathrm{M}:$ Membrana de bomba	
$\mathrm{F}:$: Flotador	$\mathrm{P}:$: Punzón	
$\mathrm{Gg}:$ Surtidor de alimentación	$\mathrm{S}:$ Tubo de emulsión	
$\mathrm{g}:$: Surtidor de ralenti	t	: Filtro
$\mathrm{i}:$ Inyector de bomba	$\mathrm{V}:$ Mariposa de los gases	
$\mathrm{K}:$ Difusor de aire	V : Mariposa de salida	
I : Palanca de bomba	$\mathrm{W}:$ Tornillo de riqueza de	

4. CARBURADORES SOLEX 34 PICS $^{4} \cdot 34$ PCIS $^{4} \cdot 34$ PICS 5 y $34 \mathrm{PCIS}^{5}$ (todo tipo).

34 PICS 5 y 34 PCIS 5

Nomenclatura:

a	: Ajuste de automaticidad
F	: Flotador
Gg	: Surtidor de alimentación
g	: Surtidor de «by-pas» (doble paso)
gN	: Surtidor de ralenti
H	: Asiento de bola
H_{1}	: Asiento de bola
i	: Inyector de bomba
K	: Difusor de aire

[^4]5. CARBURADORES SOLEX 34 PICS 6 y 34 PCIS 6 (todo tipo).
A. 14.8

$\begin{array}{ll}\text { M } & \text { : Membrana de bomba } \\ P & \text { : Punzón } \\ \text { s } & \text { : Tubo de emulsión } \\ t & \text { : Filtro de tamiz } \\ \text { U } & \text { Orificios calibrados } \\ U_{1} & \\ V & \text { Mariposa de los gases } \\ V_{1} & \text { : Mariposa de salida } \\ \text { W } & \text { : Tornillo de riqueza de ralenti } \\ \text { Va } & \text { : Tornillo de aire del ralenti }\end{array}$
6. CARBURADORES SOLEX $26 / 35$ CSIC y $26 / 35$ SCIC (todo tipo) $\rightarrow 19 / 1972$

Nomenclatura:

a	$:$ Ajustes de automaticidad
F	$:$ Flotador
Gg	$:$ Surtidores de alimentación
g	$:$ Surtidor de ralenti
$\mathrm{H}_{1}-\mathrm{H}_{2}$	$:$ Asientos de bola
i	$:$ Inyector de bomba
K	$:$ Difusores de aire

7. CARBURADORES SOLEX $26 / 35$ CSIC y $\mathbf{2 6 / 3 5}$ SCIS (todo tipo) 9/1972 \longmapsto

CONTROL DE LA ALIMENTACION DE GASOLINA

BOMBA DE GASOLINA.

1. Caracteristicas:

Bomba de gasolina aspirante y expelente del tipo de membrana mandada por una excentrica.
Proveedores:

- SEV-MARCHAL,
- GUIOT.

2. Control de la estanqueidad (bomba desmontada):
a) Obturar el orificio de salida "a".
b) Soplar con aire comprimido a una presión de 800 milibares, en el tubo de aspiración "b" de la bomba.
c) Introducir la bomba en un recipiente que contenga gasolina limpia.
No se debe producir ninguna fuga.
3. Control de la presión sobre el vehículo, con la ayuda del aparato 4005-T.:
Colocar el aparato como lo indica la figura correspondiente.
Desconectar el tubo de llegada de la gasolina al carburador y conectarlo en "c" sobre el aparato.
Conectar el tubo A al carburador.
Desenroscar el tapón moleteado B una vuelta y media aproximadamente.
Poner el motor en funcionamiento.
a) Controlar la presión sin caudal:

Roscar a fondo el tornillo moleteado B.
Leer sobre el manómetro la presión estabilizada que debe ser de 180 a 200 milibares como máximo.
b) Controlar la estanqueidad de las válvulas de la bomba: Parar el motor.
La presión no debe bajar bruscamente.
c) Controlar la estanqueidad del punzón del carburador: Aflojar el tornillo moleteado B.
Poner el motor en funcionamiento durante algunos segundos.
Parar el motor.
La presión no debe bajar bruscamente.
Desmontar el aparato 4005-T y conectar el tubo de llegada de gasolina al carburador.
4. Control del recorrido de la varilla de mando:

Colocar la varilla de mando (1) en su posición mas baja, haciendo girar el motor.
Con la ayuda de un calibre de profundidad C , medir la parte saliente de la varilla (con relacion a la parte superior del separador (2) de bomba).
Este sobresaliente debe ser de:

- 1 mm . $\left\{\begin{array}{l}\text { Motores } 425 \mathrm{~cm}^{3} \text { (A } 53 \text { y A 79/0) }\end{array}\right.$
- $1,2 \mathrm{~mm}$.: Motores M $28 / 1$ - M 28 y A 79/1.

Medir la longitud de la varilla que debe ser de:

- 144,3 mm. \quad Motores $425 \mathrm{~cm}^{3}$ (A 53 y A 79/0)

Motor $602 \mathrm{~cm}^{3}$ (M 4)

- 110,6 a $110,7 \mathrm{~mm}$. (Motores M 28/1 - M 28 y A 79/1).

El recorrido de la varilla de mando debe ser de:

- $1,12 \mathrm{~mm}$. (Motores A 53 - M 4 y A 79/0).

2,6-0,16 $\quad \mathrm{mm}$. (Motores M 28/1-M 28 y A 79/1)

This Page Is Intentionally Blank

CARACTERISTICAS

DISTRIBUIDOR:

Marcas: DUCELLIER o FEMSA.

Separación de platinos: 0,35 a $0,45 \mathrm{~mm}$.
Angulo de cierre:

- Distribuidores montados hasta Febrero de 1970: $144^{\circ} \pm 2^{\circ}(80 \% \pm 2 \%$ Dwell).
- Distribuidores montados a partir de Febrero de 1970: $109^{\circ} \pm 3^{\circ}(60 \% \pm 2 \%$ Dwell).

BOBINAS:

Marca: DUCELLIER

- Equipo de 6 voltios: Referencia 2768 - Equipo 12 voltios: Referencia 2769.

Marca: FEMSA

BUJIAS:
En lo que concierne a las marcas y los tipos de bujías preconizados, dirigirse a las Notas Técnicas que tratan de este tema y que aparecen periódicamente.

CONDENSADOR:

Capacidad: 0,18 a $0,28 \mu \mathrm{~F}$.

CURVAS DE AVANCE CENTRIFUGO:

Curva A

A. $21-53$

I. CONTROL DEL PUNTO DE ENCENDIDO

1. Conectar una lámpara testigo A , entre el borne "一" (señal azul) de la bobina de encendido y la masa (la tapa de llenado de aceite por ejemplo). Desconectar los cables de bujia.
2. Poner el contacto.
3. Introducir una varilla de $\varnothing=6 \mathrm{~mm}$., o una varilla MR. 630-51/15 en el caso de los motores del tipo M 28/1 y M 28, en el orificio del cárter-motor, del lado izquierdo, pasándola entre el tubo de escape y la culata.
Mantenerla en contacto sobre el volante.
4. Girar el motor mediante el volante, en el sentido de funcionamiento. En el momento preciso en que la varilla se introduce en el orificio del volante (punto de encendido), la lámpara testigo debe encenderse. Si la lámpara testigo se enciende, antes del punto de encendido (avance), o después de este punto (retraso), en un ángulo superior a $1^{\circ}(2 / 3$ de un diente \circ un entrediente de la corona del arranque), es necesario, regular el punto de encendido.
Señalar el punto de encendido sobre el volante con relación a un punto tomado sobre el cárter.
5. Efectuar este mismo control para el otro cilindro, girar el volante en el sentido de la marcha.
señalar el punto de encendido sobre el volante con relación al punto inicialmente tomado sobre el cárter. Si existe una diferencia de más de 3° (un diente y un entrediente de la corona del arranque), entre los dos puntos de encendido, proceder al desmontaje del distribuidor y sustituir la leva.
6. Quitar el contacto, sacar la varilla y desmontar la lámpara testigo A.
Conectar los cables a las bujias.

II. REGLAJE DEL PUNTO DE ENCENDIDO

5114

5152

1. Desmontar la calandria.

Desmontar el ventilador (extractor 3006-T bis).
2. Introducir una varilla $\varnothing=6 \mathrm{~mm}$., o una varilla MR. $630-51 / 15$, según el tipo de motor, en el orificio previsto en el cárter motor, del lado izquierdo.
3. Girar el motor por el volante hasta que la varilla penetre en el orificio del volante. El motor está en el punto de encendido.
4. Desconectar los cables de bujías. Conectar una lámpara testigo A entre el borne "一» (señal azul) de la bobina de encendido y la masa (la tapa de llenado del aceite por ejemplo). Poner el contacto.
5. Desmontar los tres tornillos (1) y la tapa (2) de la caja del ruptor. Verificar que las contrapesas del avance centrífugo están en posición de descanso.
6. Aflojar los dos tornillos (3) de fijación de la caja.

Buscar entonces el punto exacto en el cual se despegan los contactos, girando la caja (4). La lámpara testigo se enciende en el punto preciso de esta separación.
Apretar los dos tornillos (3). Fijar la tapa (2) mediante los tres tornillos (1) (arandela dentada bajo la cabeza). Sacar la varilla de calado.
7. Hacer girar el motor (por el volante) en el sentido de funcionamiento, la lámpara se apaga. Parar la rotación en el punto exacto en el cual se enciende la lámpara de nuevo (el motor ha realizado una vuelta completa). La varilla debe introducirse en el orificio del volante motor.
Si el orificio del volante ha sobrepasado la varilla, existe atraso en el encendido. Es necesario regular el punto de encendido sobre este cilindro; en ningún caso el avance debe ser inferior a:
12° (motores A 53-A 79/0-A 79/1-M 4). 8° (motores M 28/1 y M 28).
No debe existir una diferencia de más de 3° (un diente más un entrediente de la corona de arranque) entre el punto de encendido de un cilindro y del otro. En caso contrario, sustituir la leva.
8. Sacar la varilla de calado.

Montar el ventilador y la rejilla de calandria.

III. CONTROL DE LA SEPARACION DE LOS PLATINOS

8383

NOTA: La nueva leva es intercambiable con la antigua.
El Departamento de Piezas de Recambio suministrará nada más que las nuevas levas.

Este control se puede realizar sin nigún desmontaje, utilizando un osciloscopio de pantalla grande o un controlador de ángulo de leva (Dwellmetro).
El ángulo de cierre de los platinos debe ser de:

o equipados de la nueva leva, lo que corresponde a una separación de los platinos de:

$$
0,4 \pm 0,05 \mathrm{~mm} .
$$

Sobre un mismo distribuidor, no debe existir una diferencia de más de $1^{\circ} 30^{\prime}$ entre los ángulos de cierre de los dos salientes de la leva.

OBSERVACION:

a) El osciloscopio permite realizar un examen completo del encendido y en particular, la verificación del ángulo de cierre y de las diferencias posibles entre los ángulos de cierre de los platinos.
b) El comprobador de ángulo de leva, permite verificar el ángulo de cierre de los contactos, pero no permite verificar la diferencia existente entre los dos salientes de la leva.

IV. REGLAJE DE LOS PLATINOS

1. Desmontar la rejilla de calandria.
2. Desmontar el ventilador (extractor $3006-\mathrm{T}$ bis).
3. Desmontar los tornillos (1) y la tapa (2) del cárter de la caja del ruptor.

OBSERVACION: Verificar el estado de los platinos: Si existe formación de crater, es necesario sustituir los platinos (ver operación correspondiente), y comprobar el condensador.
A. Reglaje con aparato de control.
4. Conectar un osciloscopio o un comprobador de ángulo de leva.
5. Poner el motor en funcionamiento. Aflojar el tornillo (4) y desplazar el soporte del contacto fijo (3), en el sentido correcto para obtener un ángulo de cierre de los piatinos de $144 \pm 2^{\circ}$ o $109 \pm 3^{\circ}$ segün el vehiculo (ver capitulo (II). Apretar el tornillo (4).

6. Controlar el ángulo de cierre de los platinos, en los dos salientes de la leva.
Unicamente el osciloscopio permite realizar este control.

OBSERVACIONES: Durante estas operaciones, procurar no dejar el motor en funcionamiento demasiado tiempo, para evitar un calentamiento anormal. Si se aprecia algún defecto, proceder a las intervenciones indicadas en el párrafo 9 .
A falta de osciloscopio o de comprobador de ángulo de leva, regular la separación de los platinos con la ayuda de un juego de galgas.
B. Reglaje con un juego de galgas.
7. Girar el motor mediante el volante hasta que uno de los dos salientes de la leva (2) levante el contacto (4) a su altura máxima.
En este punto la separación de los platinos debe ser de $0,4 \mathrm{~mm}$. En caso contrario, aflojar el tornillo (3) y desplazar el soporte del contacto fijo (1) en el sentido deseado hasta obtener la separación correcta.
8. Apretar con moderación el tornillo (3).
9. Girar el motor hasta que el saliente de la leva (2) levante el contacto (4) à su altura máxima.
Controlar de nuevo la separación de los platinos. Si la cota medida es inferior a $0,35 \mathrm{~mm}$. o superior a $0,45 \mathrm{~mm}$. la leva o el árbol de levas está defectuoso.
Para asegurarse en este punto:
Sin volver a girar el motor, desmontar la caja del ruptor, desmontar la leva y volver a montarla, después de haberla girado 180°, sobre el extremo del árbol de levas. Montar el ruptor de tal manera que, el contacto móvil esté en su apertura máxima.
Volver a efectuar la medida de la separación de los platinos.
1.er Caso:

La cota medida está ahora comprendida entre 0,35 y $0,45 \mathrm{~mm}$., lo que indica que el otro saliente de la leva está gastado, es necesario sustituir la leva.
2. ${ }^{\circ}$ Caso:

La cota medida es idéntica a la tomada anteriormente (al principio del párrafo 9): esto indica que el extremo del árbol de levas está variado; es necesario, sustituir el árbol de levas.
10. Montar la tapa (6) y los tres tornillos (5) (arandela dentada) sobre la caja.
11. Montar el ventilador.
12. Montar la rejilla de calandria.

V. CONTROL DE LA CURVA DEL AVANCE CENTRIFUGO

Curva A

Curva B

Curva C

Este control, sin desmontaje, se puede efectuar unicamente mediante una lámpara estroboscópica, un desfasador de ángulo y un cuentarrevoluciones.

Es necesario efectuar, previamente, una señal sobre el volante y sobre el cárter motor, del punto de encendido.

Ver cuadro (de la Operación A. 210-00) para la correspondencia de los motores con los vehículos.

Curva A:

- Motores A 53 y M 4

Curva B:

- Motor A 79/0

Curva C:

- Motores A 79/1 - M 28/1 y M 28

1. Señalar la posición del punto de encendido:

Conectar una lámpara testigo entre el borne "一" (señal azul) de la bobina de encendido y la masa (la tapa de llenado del aceite por ejemplo).
Desconectar los cables de bujias.
Poner el contacto.
Girar el motor, mediante el volante, en el sentido de funcionamiento. En el momento preciso en el cual se enciende la lámpara, marcar con precisión dos señales, la una enfrente de la otra, una en el volante y la otra en el cárter motor (sobre una de las patillas de acoplamiento con la caja de velocidades; raya de lápiz sobre un trozo de papel adhesivo por ejemplo).
2. Quitar la lámpara testigo. Conectar los cables de bujías.
3. Colocar la lámpara estroboscópica, el desfasador y el cuentarrevoluciones.
4. Poner el motor en funcionamiento y controlar la curva. Si esta última es incorrecta, proceder al reglaje del avance centrifugo, o a la sustitución de las contrapesas.
5. Parar el motor. Desmontar la lámpara estroboscópica, el desfasador y el cuentarrevoluciones.

NOTA: A falta de lámpara estroboscópica y de desfasador, es posible controlar el avance centrifugo máximo (ver capítulo VI de la misma operación).

VI. CONTROL Y REGLAJE DEL AVANCE CENTRIFUGO MAXIMO

1. Desmontar la rejilla de calandria.

3991

2. Desmontar el ventilador (extractor $3006-\mathrm{T}$ bis).
3. Desmontar el distribuidor.
4. Fijar el sector graduado A del aparato 1692-T bis mediante el tornillo (1) de fijación del distribuidor.
5. Montar sobre la leva, introduciéndolo a fondo, el portaagujas B y apretar con moderación el tornillo de sujeción C.
6. Girar el volante hasta colocar la aguja del aparato enfrente de la señal O.
7. Ejercer un movimiento de rotacion, de derecha a izquierda, sobre el porta aguja, sin forzar. Al final del recorrido la aguja debe encontrarse:
a) En la zona "AZB" para los distribuidores montados sobre los motores A 53 y M 4.
b) En la zona "D" para los distribuidores montados sobre los motores A 79/0.
c) En la zona "AZP" para los distribuidores montados sobre los motores A 79/1 - M 28/1 y M 28.

Si la aguja se encuentra fuera de la zona que corresponde al tipo de ruptor, es necesario regular el recorrido de los contrapesos, doblando las patillas topes E y F.
8. Desmontar el aparato 1692-T.
9. Montar la caja del ruptor, regular los contactos y efectuar el punto de encendido.
10. Montar el ventilador.
11. Montar la rejilla de calandria.

I. CONTROL DE LA PRESION DEL ACEITE SOBRE EL VEHICULO

1. Calentar el motor hasta obtener una temperatura del aceite motor a $80^{\circ} \mathrm{C}$ aproximadamente.

2. Parar el motor.

Desmontar (del lado izquierdo del cárter motor) el manocontacto (1) de presion del aceite, o el tapón 'obturador si el motor no está equipado de manocontacto.
3. Colocar el racor 3099-T (junta de cobre) equipado del manómetro 2279-T graduado de 0 a 10 bares.
4. Controlar la presión del aceite:
a) Motores A 53 - A 7910 y M 4.

Poner en funcionamiento el motor y acelerar hasta obtener un régimen de $\mathbf{4 . 0 0 0} \mathbf{r}$. p. \mathbf{m}.
La presión debe ser de: 2,5 a 3,1 bares.
Si la presión del aceite es incorrecta, modificar la cantidad de arandelas colocadas bajo el muelle de la válvula de descarga (atención a la caída de la bola).
b) Motor A 79/1:

Poner en funcionamiento el motor y acelerar hasta obtener un régimen de 6.000 r. p. m.
La presión tiene que ser de: 4 a 5 bares.
Si la presión del aceite es incorrecta, sustituir el muelle del pistón de la válvula de descarga situado en el tapón (2).
c) Motores M 28/1 y M 28:

Poner en funcionamiento el motor y acelerar hasta obtener un régimen de 6.000 r. p. \mathbf{m}. La presión debe ser de: 5,5 a 6,5 bares.
Si la presión del aceite es incorrecta, sustituir el muelle del pistón de la válvula de descarga situado en el tapón (2).

OBSERVACION: Si estas intervenciones no dan resultado, es necesario verificar la bomba de aceite y el circuito de engrase.
5. Desmontar el manómetro 2279-T, el racor 3099-T y el cuentarrevoluciones.
6. Montar el manocontacto de presion del aceite (1) o el tapón obturador (junta de cobre).
Conectar el cable del manocontacto

II. CONTROL DE LA DEPRESION EN EL CARTER MOTOR

1. Para verificar la depresión en el cárter motor, utilizar el manómetro de agua MR. 630-56/9 a.

Uno de los extremos será conectado al tubo de goma de estanqueidad de la varilla medidora del aceite.
2. Con el motor al ralentí, acelerar ligeramente para estabilizar los niveles del manómetro.

ATENCION: EI liquido debe subir en el tubo del
manómetro que está conectado al motor.

Leer la diferencia de niveles:

- al ralenti 5 cm . de agua como minimo.

En el caso contrario, sustituir la valvula depresora (reniflard).

OBSERVACION: La depresión no debe en ningún caso bajar a cero.

CONTROL DEL ALINEAMIENTO DEL CONJUNTO MOTOR-CAJA DE VELOCIDADES

DESMONTAJE.

1. Desmontar el conjunto motor-caja de velocidades.
2. Desmontar el silencioso delantero del escape. Colocar el conjunto motor-caja sobre el banco.
3. Desacoplar el motor de la caja de velocidades: Asegurarse de que no se ejerza ningún esfuerzo sobre el árbol de mando.
4. Preparar la caja de velocidades (caso de un embrague centrifugo):
Desmontar el tambor de embrague.
Quitar el frenillo y desenroscar la tuerca de blocaje del rodamiento (a izquierdas).

ATENCION: Durante el aflojado de la tuerca, sujetar por debajo la llave para no apretar sobre el árbol de mando.

Quitar el conjunto tambor de embrague-mecanismo.
5. Preparar el motor:

Desmontar el mecanismo y el disco de embrague (embrague clásico únicamente).
Desmontar el volante motor.
Desmontar las bujias.

CONTROLES.

6. Controlar los alojamientos de los centradores:

Desmontar los centradores del cárter motor.
Controlar muy cuidadosamente los alojamientos "a" de los centradores en el cárter motor, y sobre todo en el cárter de embrague.
Si estos alojamientos no son perfectamente cilindricos, es necesario sustituir el cárter deteriorado.
7. Controlar la posición de los espárragos y centradores, sobre el cárter motor:
Fijar sobre el cigüeñal el soporte MR. 630-52/16 equipado de un comparador (2437-T).
NOTA: Se trata de comparar las distancias entre el eje del cigüeñal y los centradores (1) o los esparragos (2). Cuando la punta del comparador hace contacto con estas piezas que son cilindricas, las agujas del comparador giran primeramente en un sentido y despues en el otro. Efectuar la lectura en el momento preciso del cambio de sentido.
Montar los centradores.
Hacer girar el cigüeñal y palpar sucesivamente los dos centradores (1). Las posiciones del cambio de sentido de la aguja del comparador deben ser iguales a $0,10 \mathrm{~mm}$. más o menos.
Hacer girar el motor y palpar sucesivamente los dos espárragos de fijación (2). Las posiciones del cambio de sentido de la aguja del comparador deben ser iguales a $0,10 \mathrm{~mm}$. más o menos.
Si las posiciones de cambio de sentido de la aguja del comparador no están dentro de las tolerancias, es necesario sustituir el cárter motor.

8. Controlar la superficie de apoyo del cárter motor:

Desmontar los centradores (1) y los espárragos (2) (señalar la posición de los espárragos).
Colocar el comparador sobre la varilla soporte A (ver figura).
Hacer girar el cigüeñal y palpar sucesivamente los cuatro apoyos "a" del cárter motor. La posición de las agujas del comparador debe ser la misma a $0,10 \mathrm{~mm}$. más o menos, sobre los cuatro apoyos. En caso contrario, es necesario sustituir el cárter motor.
Desmontar el soporte y el comparador.
9. Controlar la posición de los alojamientos de los centradores sobre el cárter de embrague:

Colocar el soporte MR. 630-52/17 (equipado del comparador 2437-T) fijado sobre la varilla más corta, en el árbol de mando, apretar el tornillo de sujeción.
Colocar los dos ejes de control MR. 630-52/17/4 en los alojamientos de los centradores: sujetarlos mediante dos tuercas $(\omega=10 \mathrm{~mm}$., paso $=150)$.
Poner una velocidad y hacer girar el árbol de mando mediante el diferencial.
Palpar sucesivamente los dos ejes de control. Las posiciones de cambio de sentido de la aguja del comparador, deben ser las mismas a $0,10 \mathrm{~mm}$. más o menos.
10. Controlar la superficie de apoyo del cárter de embrague:

Desmontar los ejes de control.
Montar el comparador sobre la otra varilla del soporte.
Hacer girar el árbol de mando y palpar sucesivamente los cuatro apoyos "b" del cárter. La posición de las agujas del comparador debe ser la misma, a $0,10 \mathrm{~mm}$. más o menos sobre los cuatro apoyos; en caso contrario, es necesario enderezar o sustituir el cárter.

OBSERVACION: Es posible enderezar el cárter y volver a situar correctamente los apoyos a su posición de origen, golpeándolos con un mazo. Verificar sus posiciones respectivas.

Desmontar el soporte y el comparador.

DESMONTAJE

1. Desmontar el motor:
(Ver Op. A. 100-4).
2. Preparar el motor:

Desmontar:

- el mecanismo y el disco de embrague (solamente embrague clásico),
- el volante motor,
- las bujías.

3. Preparar la caja de velocidades:
(Embrague centrífugo):

- Desbloquear y desenroscar la tuerca (1) de bloqueo del rodamiento (paso a izquierdas).

Durante el aflojado de la tuerca (1), sujetar la llave para no apoyarla sobre el árbol de mando.

- Quitar el conjunto (2) tambor-mecanismo de embrague.
(Embragues clásico y centrífugo).
- Desmontar el collarín de embrague.

CONTROLES

4. Controlar los alojamientos de los pies de centrado:

Desmontar los pies de centrado del cárter motor.
Controlar los alojamientos " b " de los pies de centrado en el cárter de embrague.
Si los alojamientos no están perfectamente cilíndricos, es preciso sustituir el cárter deteriorado.
5. Controlar el plano de apoyo del cárter motor:

Desmontar los espárragos (marcar su posición).
Colocar el útil de control sobre el cigüeñal OUT. 304054 equipado con la pieza A del soporte 5602-T ó 2041-T y con el comparador 2437-T.
Girar el cigüeñal y palpar sucesivamente los cuatro planos "a" del apoyo del cárter motor: La posición de las agujas del comparador tiene que ser la misma, o con una variación máxima de $0,10 \mathrm{~mm}$., en los cuatro planos.
Se puede enderezar el cárter y poner los planos que están fuera de tolerancia en su posición de origen golpeándolos con un mazo.
Desmontar el utillaje de control.

6. Controlar el plano de apoyo del cárter de embrague:

Montar el útil en la guía del collarín de embrague.
Girar el útil de control sujetándole en apoyo sobre la guía del collarín (\longrightarrow) y palpar sucesivamente los cuatro planos "c" de apoyo del cárter.

La posición de las agujas del comparador tiene que ser la misma, o con una variación máxima de $0,10 \mathrm{~mm}$. en los cuatro planos, si no, es preciso sustituir el cárter.

Se puede enderezar el cárter y poner los planos que están fuera de tolerancia en su posición de origen golpeándolos con un mazo.

Desmontar el útil de control.

7. Preparar el motor:

Montar:

- el volante de motor: apriete de los tornillos $=4$ a $4,5 \mathrm{~m} . \mathrm{daN}$.
- el disco y el mecanismo de embrague, (ver Operación: A. 100-3)
- las bujías.

8. Preparar la caja de velocidades:

Montar:

- el collarín de embrague.

Embrague centrífugo:

- el conjunto (2) tambor-mecanismo de embrague,
- la tuerca (1) de fijación, apriete $=3$ a $4 \mathrm{~m} . d a N$ (rosca a izquierdas).

Durante el apriete, sujetar la llave, para no apoyarse sobre el árbol de mando.

Frenar la tuerca doblando el metal en el fresado del árbol.

Durante esta operación, "sufrir" por debajo de la tuerca para no deteriorar el roscado de retorno de aceite que hay en el árbol de mando.

EMBRAGUES MONTADOS SOBRE LOS VEHICULOS EQUIPADOS DE LOS MOTORES:
Motor A 53 - Motor A 79/0 - Motor M 4

A. $31-3$

CARACTERISTICAS

Mecanismos: "FERODO" tipo PKH 3 (motores A 53 y A 79/0)		
Disco	Tipo progresivo $\rightarrow 1967$	Tipo "DENTEL" $\longmapsto 1967$
Buje del disco	10 estrías $\rightarrow 1966$	18 estrías $\longmapsto 1966$
Guarnecido	Calidad "FERODO" M 8 o A 3 S	
Collarín	Tope grafitado	

PUNTOS PARTICULARES

Muelles de embrague: (motores A 53 y A 79/0).

- 3 muelles (señal "rosa") - Longitud = 25 mm ., bajo carga de 27 a $29,5 \mathrm{~kg}$.

3 muelles (señal "naranja") - Longitud = 25 mm ., bajo carga de 18 a $20,5 \mathrm{~kg}$.

Muelles de embrague: (motor M 4).

- 6 muelles (señal "gris claro") - Longitud $=25 \mathrm{~mm}$., bajo carga de 37 a 40 kg .

Distancia entre la superficie de ensamblado motor-caja de velocidades y la cara del alojamiento del rodamiento en el tambor (embrague centrífugo) $=5,12$ a $5,42 \mathrm{~mm}$.

Pares de apriete:

- Tuerca de fijación del tambor de embrague sobre el árbol de mando

3 a 4 da Nm.

- Tornillo de la corona porta masas 0,9 a 1,4 da Nm.
- Tornillo de fijación del mecanismo de embrague 1 a 1,3 da Nm.

Holgura entre collarin y chapa de apoyo de las patillas
0,5 a 1 mm .
Holgura en el pedal 10 a 15 mm .

Reglaje de las patillas (ver dibujo página 1):

- Distancia entre el extremo de las patillas y el plato de presión . H $=26$ a $27,5 \mathrm{~mm}$.
- Distancia entre el plato y el cárter de chapa . h $=12 \mathrm{~mm}$.

EMBRAGUES MONTADOS SOBRE VEHICULOS EQUIPADOS DE LOS MOTORES:

Motores A 79/0 - A 79/1 - M 28/1 - M 28

CARACTERISTICAS

Mecanismo	"FERODO" Tipo PKHB 4,5
Disco	Tipo "DENTEL"
Cubo del disco	18 estrías
Guarnecido	Calidad A 3 S u 813 lado motor y A 3 S lado caja de velocidades
Collarín	Cojinete de bolas

PUNTOS PARTICULARES

Muelles de embrague:

- 6 muelles (señal "rubis") - Longitud $=25 \mathrm{~mm}$. bajo carga de 37 a 40 kg .
Distancia entre la superficie de ensamblado motor-caja de velocidades y la cara del alojamiento, que recibe el rodamiento, en eltambor (embrague centrífugo) $=5,12$ a $5,42 \mathrm{~mm}$.
Pares de apriete:
- Tuerca de fijación del tambor de embrague sobre el árbol de mando 3 a 4 da Nm .
- Tornillo de la corona porta masas 0,9 a $1,4 \mathrm{da} \mathrm{Nm}$.
- Tornillo de fijación del mecanismo de embrague 1 a $1,3 \mathrm{da} \mathrm{Nm}$.
Holgura entre el collarín y las patillas $1 \mathrm{a} 1,5 \mathrm{~mm}$.
Holgura del pedal 20 a 25 mm .
Reglaje de las patillas (ver dibujo página 3):
- Distancia entre el extremo de las patillas y el plato de presión $\mathrm{H}=25,6$ a $26,3 \mathrm{~mm}$.
- Distancia entre el plato y el cárter de chapa $h=12 \mathrm{~mm}$.

REGLAJE DE LA GARANTIA DE EMBRAGUE

Manual 854-1

A. Vehiculos franceses:

Vehiculos AZ (2 CV) \rightarrow Febrero 1970
Vehiculos AZU (2 CV) \longrightarrow Enero 1972
Vehiculos AK (3 CV) \longrightarrow Octubre 1967
Vehiculos AM (3 CV) \longrightarrow Diciembre 1963

Vehículos españoles:
Vehiculos AZL (2 CV)
Vehiculos AZU (2 CV)
Vehiculos AK (3 CV) hasta Marzo de 1971

OBSERVACION: El patin del pedal de embrague debe estar a la misma altura que el del freno.
La altura del pedal de embrague se obtiene por desplazamiento del pasador de tope colocado en uno de los orificios de la varilla del pedal.

1. Regular la garantia de embrague:

Aflojar la contratuerca y apretar o aflojar la tuerca (1) de reglaje, para obtener una holgura de 0,5 a $1 \mathbf{m m}$. entre la tuerca (1) y la horquilla (2).
Para efectuar esta verificación: sujetar, el cable de embrague (3), tensado por su extremo libre y apretar ligeramente sobre la horquilla de embrague (2) para poner en contacto el collarín grafitado, con la chapa de apoyo de las patillas.
Apretar la contratuerca (4).
B. Vehiculos $A Y$ - $A K \cdot A Z U \cdot A Z L$ equipados de una pedalera suspendida.
2. Controlar la altura del pedal:

Con el pedal haciendo tope en «a», la altura del pedal debe ser de:

$$
\mathrm{L}=130,5 \pm 5 \mathrm{~mm} .
$$

del ángulo inferior del patin a la chapa del piso.
En caso contrario, doblar la chapa del soporte en «a» para obtener esta cota.

3. Regular la garantia del embrague:

Aflojar la contratuerca (6) y actuar sobre la tuerca (5) para obtener una holgura de 1 a $1,5 \mathrm{~mm}$., entre el cojinete de empuje y las patillas. Con esta condición, la holgura del pedal de embrague debe ser de 20 a 25 mm . Apretar la contratuerca (6).

This Page Is Intentionally Blank

I. CAJAS DE VELOCIDADES:

Con la palanca de mando en la tapa trasera,
que equipan los vehículos: $\left\{\begin{array}{lll}A Z & \rightarrow & \text { Febrero 1970 } \\ A Y & \rightarrow & \text { Octubre 1968 (} \rightarrow \text { Marzo } 1968 \text { en el AYA DYANE) } \\ A Z U & \rightarrow & \text { Enero } 1972 \\ A K & \rightarrow & \text { Mayo 1968 } \\ A M & \rightarrow & 19 \text { de Febrero de } 1968\end{array}\right.$

PUNTOS PARTICULARES

Reglajes:

- Juego lateral del piñón loco de 2. ${ }^{\text {a }}$ 0,05 a $0,35 \mathrm{~mm}$.- Juego lateral del tren intermediario:- 2 CV (no regulable): par antiguo (con rodamiento de 18 mm . de ancho) . 0,05 a 0,35 mm.par nuevo (con rodamiento de 16 mm . de ancho)0,45 a 1 mm .- 3 CV (regulable):0,10 a $0,20 \mathrm{~mm}$.- Juego entredientes (piñón, corona)0,13 a $0,23 \mathrm{~mm}$
- Juego mínimo entre planetarios y satélites $0,1 \mathrm{~mm}$.

Pares de apriete:

Tuerca del árbol primario	$7 \text { a } 9 \text { da Nm. }$
- Tuerca del árbol del piñón de ataque	$7 \mathrm{a} 8,5 \mathrm{da} \mathrm{Nm}$.
- Tornillo de brida de rodamiento del árbol de mando	2,5 da Nm.
- Tornillo de brida de rodamiento trasero del árbol de piñón de ataque	2,5 a 3 da Nm.
- Tuerca de fijación del rodamiento del árbol de mando	12 a 14 da Nm .
- Tornillo de fijación de la corona del diferencial	$7 \mathrm{a} 8 \mathrm{da} \mathrm{Nm}$.
- Tuerca de fijación del árbol de salida en el rodamiento del soporte	10 a 12 da Nm .
- Tuerca casquillo de fijación del rodamiento del árbol de salida en el soporte	10 a 14 da Nm .
- Tapón de vaciado	3,5 a 4,5 da Nm.
- Tapón de nivel	1 a 1,5 da Nm.
- Cárter de embrague (fijación): Tuerca $\phi=10 \mathrm{~mm}$.	3,5 a 4,5 da Nm.
Tornillo $\phi=7 \mathrm{~mm}$.	1,5 a 2 da Nm .
- Tapa trasera (tornillos $\phi=7 \mathrm{~mm}$.).	1,5 a 2 da Nm .
Tuerca de fijación de los soportes de los árboles de salida ($\phi=9 \mathrm{~mm}$.)	3,8 a 4,2 da N

Lubrificación:

A. 33-1

CADENA CINEMATICA

Relación de las velocidades (con neumáticos de 125-380 \times cuyo desarrollo bajo carga es de 1,800 metros):

C.V. en los vehículos AZ 11/1964 \rightarrow 2/1970				
Velo- cidades	Desmultiplicación de la caja	Par cónico	Desmultiplicación total	Velocidad a 1.000 r.p.m. motor (en km/h.)
1 2 3 4 M. A.	$\begin{array}{lr} 19 / 28 \times 14 / 33 \times 15 / 32(7,410) \\ 19 / 28 \times 22 / 25 \times 15 / 32(3,572) \\ 15 / 32 & (2,133) \\ 19 / 28 & (1,473) \\ 19 / 28 \times 13 / 33 \times 15 / 32 & (7,980) \end{array}$	$\begin{gathered} 8 / 29 \\ (3,625) \end{gathered}$	$\begin{array}{r} 26,863 \\ 12,950 \\ 7,733 \\ 5,342 \\ 28,929 \end{array}$	$\begin{array}{r} 4,020 \\ 8,339 \\ 13,966 \\ 20,217 \\ 3,733 \end{array}$
Relación de la toma del cuentakilómetros $=6 / 25$				

C.V. en los vehículos AZU 11/1964 \rightarrow 3/1968				
Velocidades	Desmultiplicación de la caja	Par cónico	Desmultiplicación total	Velocidad a 1.000 r.p.m. motor (en km/h.)
1	$19 / 28 \times 14 / 33 \times 15 / 32(7,410)$		28,713	3,761
2	$19 / 28 \times 22 / 25 \times 15 / 32(3,572)$		13,841	7,802
3	15/32 (2,133)		8,265	13,067
4	19/28 (1,473)	$(3,875)$	5,707	18,924
M. A.	19/28 $\times 13 / 33 \times 15 / 32(7,980)$		30,922	3,926
Relación de la toma de cuentakilómetros $=5 / 22$				

C.V. en los vehículos AZU 3/1968 \rightarrow 1/1972				
Velocidades	Desmultiplicación de la caja	Par cónico	Desmultiplicación total	Velocidad a 1.000 r.p.m. motor (en km/h.)
$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ \text { M. A. } \end{gathered}$	$\begin{array}{lr} 18 / 28 \times 14 / 33 \times 15 / 32(7,822) \\ 18 / 28 \times 24 / 26 \times 15 / 32(3,595) \\ 15 / 32 & (2,133) \\ 18 / 28 & (1,555) \\ 18 / 28 \times 13 / 33 \times 15 / 32(8,423) \end{array}$	$\begin{gathered} 8 / 31 \\ (3,875) \end{gathered}$	$\begin{array}{r} 30,311 \\ 13,930 \\ 8,266 \\ 6,027 \\ 32,642 \end{array}$	$\begin{array}{r} 3,563 \\ 7,753 \\ 13,065 \\ 17,919 \\ 3,308 \end{array}$
Relación de la toma de cuentakilómetros $=5 / 22$				

Relación de las velocidades (con neumáticos de 125-380 X cuyo desarrollo bajo carga es de 1,800 metros):

C.V. en los vehículos AYA (DYANE) 8/1967 \rightarrow 3/1968				
Velo- cidades	Desmultiplicación de la caja	Par cónico	Desmultiplicación total	Velocidad a 1.000 r.p.m. motor (en km/h.)
1	$18 / 28 \times 14 / 33 \times 15 / 32(7,822)$		28,355	3,808
2	$18 / 28 \times 24 / 26 \times 15 / 32(3,595)$		13,032	8,287
3	15/32 (2,133)		7,733	13,966
4	18/28 (1,555)		5,638	19,155
M. A.	$18 / 28 \times 13 / 33 \times 15 / 32(8,428)$		30,536	3,536
Relación de la toma de cuentakilómetros $=6 / 25$				

Relación de las velocidades (con neumáticos $125 \cdot 380 \times$ y $135 \cdot 380 \times$, cuyo desarrollo bajo carga es de $1,800 \mathrm{~m}$. y 1,840 metros):

Relación de las velocidades: (con neumáticos $135 \cdot 380 \times$ cuyo desarrollo bajo carga es de 1,840 metros:

	C.V. en los vehículos	(Break (Break	67) ar) (7/1965 \longrightarrow cial) (7/1965	8)
Velo. cidades	Desmultiplicación de la caja	Par cónico	Desmultiplicación total	Velocidad a 1.000 r.p.m. motor (en km / h.)
1	$19 / 27 \times 14 / 31 \times 13 / 25(6,051)$		21,935	5,033
2	$19 / 27 \times 23 / 26 \times 13 / 25(3,089)$		11,198	9,250
3	13/25 (1,923)		6,971	15,837
4	19/27 (1,421)		5,151	21,432
M. A.	$19 / 27 \times 14 / 31 \times 13 / 25(6,051)$		21,935	5,033
Relación de la toma del cuentakilómetros $=4 / 15$				

II. CAJAS DE VELOCIDADES:

Con palanca de mando sobre la tapa superior, que equipa los vehículos:

PUNTOS PARTICULARES

Reglajes:

- Juego lateral del piñón loco de 2. ${ }^{\text {a }}$	0,05 a 0,35 mm.
- Juego lateral del tren intermediario	0,10 a $0,20 \mathrm{~mm}$.
- Juego mínimo entre planetarios y satélites	$0,1 \mathrm{~mm}$.
- Juego entredientes (piñón, corona):	
V.V. con palanca sobre la	0,14 a 0,18

Pares de apriete:

Lubrificación:

```
- Calidad del aceite
TOTAL EP 80
- Capacidad

CORTE LONGITUDINAL


CADENA CINEMATICA


Relación de velocidades (con neumáticos de 125-380 \(\times\) cuyo desarrollo bajo carga es de \(1,800 \mathrm{~m}\).) (con neumáticos de 135-380 X cuyo desarrollo bajo carga es de \(1,840 \mathrm{~m}\). )

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\[
\text { CV.en los vehículos }\left\{\begin{array}{l}
\text { AK }(10 / 1967 \rightarrow 5 / 1968) \\
\text { AMF }(\text { AMI } 6 \text { Familiar) }(2 / 1968 \rightarrow 5 / 1968) \\
\text { AMC (AMI } 6 \text { Break Comercial) }(2 / 1968 \longrightarrow 5 / 1968)
\end{array}\right.
\]} \\
\hline \multirow[t]{2}{*}{Velocidades} & \multirow[t]{2}{*}{Desmultiplicación de la caja} & Par cónico & Desmultiplicación total & Velocidad motor & \[
\begin{aligned}
& 1.000 \text { r.p.m. } \\
& \mathrm{km} . \mathrm{h} .)
\end{aligned}
\] \\
\hline & & & & 125.380 X & \(135.380 \times\) \\
\hline 1 & \(19 / 27 \times 14 / 31 \times 13 / 25(6,051)\) & \multirow{5}{*}{\[
\begin{gathered}
8 / 29 \\
(3,625)
\end{gathered}
\]} & 21,934 & 4,923 & 5,033 \\
\hline 2 & 19/27 \(\times 23 / 26 \times 13 / 25(3,089)\) & & 11,197 & 9,645 & 9,859 \\
\hline 3 & 13/25 (1,923) & & 6,970 & 15,494 & 15,839 \\
\hline 4 & 19/27 (1,421) & & 5,151 & 21,197 & 21,668 \\
\hline M.A. & \(19 / 27 \times 14 / 31 \times 13 / 25(6,051)\) & & 21,934 & 4,923 & 5,033 \\
\hline \multicolumn{6}{|c|}{Relación de la toma de cuentakilómetros \(=4 / 15\)} \\
\hline
\end{tabular}

Relación de las velocidades (con neumáticos de \(125-380 \times\) cuyo desarrollo bajo carga es de \(1,800 \mathrm{~m}\).)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{CV.en los vehículos} & \multicolumn{3}{|l|}{\begin{tabular}{l}
AYB (DYANE 6, motor M 28) \((2 / 1970 \rightarrow\) ) \\
AM 3 (AMI 8) (3/1969 \(\rightarrow 7 / 1969\) ) \\
AM F 3 (Break AMI 8) (9/1969 \(\rightarrow\) 9/1978)
\end{tabular}} \\
\hline Velocidades & Desmultiplicación de la caja & Par cónico & Desmultiplicación total & Velocidad a 1.000 r.p.m. motor (en km./h.) \\
\hline 1 & \(20 / 27 \times 14 / 31 \times 13 / 25(5,748)\) & & 22,275 & 4,848 \\
\hline 2 & 20/27 \(\times 23 / 26 \times 13 / 25(2,934)\) & & 11,372 & 9,497 \\
\hline 3 & \(13 / 25 \quad(1,923)\) & 8/31 & 7,451 & 14,494 \\
\hline 4 & 20/27 (1,350) & & 5,231 & 20,646 \\
\hline M.A. & \(20 / 27 \times 14 / 31 \times 13 / 25(5,748)\) & & 22,275 & 4,848 \\
\hline \multicolumn{5}{|c|}{Relación de la toma de cuentakilómetros \(=4 / 16\)} \\
\hline
\end{tabular}

Relación de las velocidades (con neumáticos de \(135-380 \times\) cuyo desarrollo bajo carga es de \(1,840 \mathrm{~m}\).)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{CV. en los vehículos \(\left\{\begin{array}{l}\text { AMC } 3 \text { (Break Comercial) (9/1969 } \\ \text { AY (Serie CD, Acadiane) (2/1978 } \rightarrow \text { 9/1978) }\end{array}\right.\)} \\
\hline Velocidades & Desmultiplicación de la caja & Par cónico & Desmultiplicación total & Velocidad a 1.000 r.p.m. motor (en km./h.) \\
\hline 1 & \(20 / 27 \times 14 / 31 \times 13 / 25(5,748)\) & & 22,275 & 4,956 \\
\hline 2 & \(20 / 27 \times 23 / 26 \times 13 / 25(2,934)\) & & 11,372 & 9,708 \\
\hline 3 & 13/25 (1,923) &  & 7,451 & 14,816 \\
\hline 4 & 20/27 (1,350) & & 5,231 & 21,104 \\
\hline M.A. & \(20 / 27 \times 14 / 31 \times 13 / 25(5,748)\) & & 22,275 & 4,956 \\
\hline \multicolumn{5}{|c|}{Relación de la toma de cuentakilómetros \(=4 / 16\)} \\
\hline
\end{tabular}

Relación de las velocidades (con neumáticos de \(135-380 \times\) cuyo desarrollo bajo carga es de \(1,840 \mathrm{~m}\).)
\begin{tabular}{|c|c|c|c|c|}
\hline & CV. en los vehículos & (Serie CA,
(5/1968 & HARI) (10/1968 \(\longrightarrow\) 2/1978) & \\
\hline Velocidades & Desmultiplicación de la caja & Par cónico & Desmultiplicación total & Velocidad a 1.000 r.p.m. motor (en km./h.) \\
\hline 1 & \(19 / 27 \times 14 / 31 \times 13 / 25(6,051)\) & & 23,448 & 4,708 \\
\hline 2 & 19/27 \(\times 23 / 26 \times 13 / 25(3,089)\) & & 11,970 & 9,223 \\
\hline 3 & 13/25 (1,923) &  & 7,451 & 14,816 \\
\hline 4 & 19/27 (1,421) & & 5,506 & 20,059 \\
\hline M.A. & 19/27 \(\times 14 / 31 \times 13 / 25(6,051)\) & & 23,448 & 4,708 \\
\hline \multicolumn{5}{|c|}{Relación de la toma de cuentakilómetros \(=4 / 16\)} \\
\hline
\end{tabular}

\title{
OPERACION N. \({ }^{\circ}\) A. 330-00 a: Características y puntos particulares de las cajas de velocidades (vehículos españoles)
}

\section*{I. CAJA DE VELOCIDADES:}

La palanca de mando que equipa estos vehículos puede venir indistintamente montada sobre la tapa central o tapa trasera.

\section*{PUNTOS PARTICULARES}

\section*{Reglajes:}
\begin{tabular}{|c|c|}
\hline - Holgura lateral del piñón loco de 2. \({ }^{\text {a }}\) & 0,05 a 0,35 mm. \\
\hline \multicolumn{2}{|l|}{- Holgura lateral del tren intermediario:} \\
\hline \begin{tabular}{l}
- \(2 \mathrm{C} . \mathrm{V}\). (no regulable): antiguo par (con rodamiento de anchura \(=18 \mathrm{~mm}\).) \\
nuevo par (con rodamiento de anchura \(=16 \mathrm{~mm}\).)
\end{tabular} & \[
\begin{aligned}
& 0,05 \text { a } 0,35 \mathrm{~mm} . \\
& 0,45 \text { a } 1 \mathrm{~mm} .
\end{aligned}
\] \\
\hline - 3 C.V. (regulable) & 0,10 a \(0,20 \mathrm{~mm}\). \\
\hline - Holgura entredientes (piñón, corona) & 0,13 a 0,23 mm. \\
\hline Holgura mínima entre planetarios y satélites & \(0,1 \mathrm{~mm}\). \\
\hline
\end{tabular}

\section*{Pares de apriete:}
\begin{tabular}{|c|c|}
\hline - Tuerca del árbol primario & 7 a 9 da Nm. \\
\hline - Tuerca del árbol piñón de ataque & a 8,5 da Nm. \\
\hline - Tornillo de brida del rodamiento del árbol de mando & \(2,5 \mathrm{da} \mathrm{Nm}\). \\
\hline - Tornillo de brida del rodamiento trasero del piñón de ataque & 2,5 a 3 da Nm . \\
\hline - Tuerca de fijación del rodamiento del árbol de mando & 12 a 14 da Nm . \\
\hline - Tornillo de fijación de la corona de diferencial & \(7 \mathrm{a} 8 \mathrm{da} \mathrm{Nm}\). \\
\hline - Tuerca de fijación del árbol de salida en el rodamiento del apoyo & 10 a 12 da Nm . \\
\hline - Tuerca-casquillo de fijación del rodamiento de árbol de salida en el apoyo & 10 a 14 da Nm. \\
\hline - Tapón de vaciado & 3,5 a 4,5 da Nm. \\
\hline - Tapón de nivel & \(1 \mathrm{a} 1,5 \mathrm{da} \mathrm{Nm}\). \\
\hline - Cárter de embrague: Tornillos de apoyos & 3,5 a 4,5 da Nm. \\
\hline Tornillos \(\phi=7 \mathrm{~mm}\). & 1,5 a 2 da Nm . \\
\hline - Tapa trasera (tornillo \(\phi=7 \mathrm{~mm}\).) & 1,5 a 2 da Nm . \\
\hline - Tornillo de fijación de los apoyos de los árboles de salida ( \(\phi=9 \mathrm{~mm}\).) & 3,8 a 4,2 da Nm. \\
\hline
\end{tabular}

\section*{Lubrificación:}
```

. Calidad del aceite . S.A.E. EP }8

- Capacidad

A. 33.1

CORTE LONGITUDINAL

CADENA CINEMATICA

Relación de las velocidades (con neumáticos de 125-380 \times que tienen un desarrollo bajo carga de 1,800 metros):

C.V. sobre vehículos AZL y AZU					
Velo. cidades	Desm	de la caja	Par cónico	Desmultiplicación total	Velocidad a 1.000 r.p.m. motor (en km/h.)
1	19/28	$1=0,1485$		0,0384	4,1472
2	19/28	$1=0,3082$		0,0795	8,5860
3	16/31	$=0,5161$		0,1331	14,3748
4	19/28	$=0,6785$		0,1751	18,9108
M. A.	19/28 \times	$1=0,1379$		0,0356	3,8448
Relación de la toma de cuentakilómetros $=4 / 16$					

C.V. sobre vehículos AK				
Velo. cidades	Desmultiplicación de la caja	Par cónico	Desmultiplicación total	Velocidad a 1.000 r.p.m. motor (en km/h.)
1	$19 / 27 \times 14 / 31 \times 13 / 25=0,1652$		0,0455	4,9140
2	$19 / 27 \times 23 / 26 \times 13 / 25=0,3237$		0,0892	9,6336
3	13/25 $=0,5200$		0,1434	15,4872
4	19/27 $=0,7037$		0,1941	20,9628
M. A.	$19 / 27 \times 14 / 31 \times 13 / 25=0,1652$		0,0455	4,9140
Relación de la toma de cuentakilómetros $=4 / 15$				

Relación de las velocidades (con neumáticos 135-380 ZX que tengan un desarrollo bajo carga de 1,840 metros):

Relación de las velocidades (con neumáticos $135 \cdot 380 \mathrm{ZX}$ que tengan un desarrollo bajo carga de 1,840 metros):

C.V. sobre vehículos Mehari-AKS - 2 CV 6				
Velo- cidades	Desmultiplicación de la caja	Par cónico	Desmultiplicación total	Velocidad a 1.000 r.p.m. motor (en km/h.)
1	$19 / 27 \times 14 / 31 \times 13 / 25=0,1652$		0,0426	4,708
2	$19 / 27 \times 23 / 26 \times 13 / 25=0,3237$		0,0835	9,223
3	13/25 $=0,5200$		0,1341	14,816
4	19/27 $=0,7037$		0,1815	20,059
M. A.	$19 / 27 \times 14 / 31 \times 13 / 25=0,1652$		0,0426	4,708
Relación de la toma del cuentakilómetros $=4 / 16$				

REGLAJE DE LAS HORQUILLAS

1. Desmontar la tapa superior de la caja de velocidades.
2. Regular el eje de horquilla de 2 . $^{\text {a }}-3$. $^{\mathrm{a}}$:
a) Colocar el eje de horquilla en el punto muerto.

OBSERVACION: En el caso de una caja de velocidades con la palanca de maniobra de las velocidades en medio de la tapa superior, la operación se facilita, utilizando la brida MR. 630-64/21 que sujeta el muelle de bloqueo.
b) Colocar la galga de reglaje 1786-T: espesor $=1,8$ milimetros, sobre el segmento de ralenti del arbol de mando.

Aflojar el tornillo de fijación de la horquilla (para los tornillos con cabeza de dos planos de arrastre, utilizar la llave 1677-T).
c) Situar, mediante la horquilla, el desplazable de $2 .{ }^{a}-3 .{ }^{\text {a }}$ en contacto con la galga de reglaje, de manera a obtener una holgura $\mathrm{J} 1=1,8 \mathrm{~mm}$., entre el extremo del desplazable de $2 .^{a}-3 .^{a}$ y las muescas del árbol de mando.
d) Apretar el tornillo de fijación de la horquilla.

3731

3. Regular la horquilla de $1 .^{\circ}$ - marcha atrás:

IMPORTANTE: Antes de proceder a este reglaje, es imperativo que la horquilla de 2 . $^{\text {a }}$ - 3. ${ }^{\text {a }}$ esté regulada correctamente.
a) Asegurarse que el eje de horquilla está en punto muerto.
b) Aflojar los tornillos de fijación de la horquilla (para los tornillos de cabeza con dos planos de arrastre, utilizar la llave 1677-T).
c) Posicionar el desplazable de $1 .^{a}$ - marcha atrás (2), situándolo mediante su horquilla, en el centro de su recorrido sobre el desplazable de 2. ${ }^{\text {a }}$ - $3 .^{\text {a }}$ (1); lo que equivale a alinear la cara trasera "a» del desplazable 1. ${ }^{a}$ - marcha atrás, con el extremo "b" de la parte rectificada del desplazable 2. ${ }^{a}$ - 3. ${ }^{a}$.
d) Apretar el tornillo de fijación de la horquilla.
4. Regular la horquilla de 4. ${ }^{\mathrm{a}}$:
a) Asegurarse que el eje de horquilla está en punto muerto.
b) Colocar la galga de reglaje sobre el segmento de ralenti del piñón de reenvio del reductor.
Utilizar la galga $1785-\mathrm{T}$ de espesor $=1,50 \mathrm{~mm}$. para los vehiculos:

- AZL, AZU, AY y AK (antiguo modelo).

Utilizar la galga $3153-\mathrm{T}$ de espesor $=2,70 \mathrm{~mm}$. para los otros vehículos:
(AYCA, AYB y AK nuevo modelo).
C) Aflojar el tornillo de fijación de la horquilla (para los tornillos de cabeza con dos planos de arrastre, utilizar la llave'1677-T).
d) Situar, mediante la horquilla, el desplazable de 4. ${ }^{\text {a }}$ en contacto con la galga de reglaje, de manera a obtener una holgura J 2 (del valor determinado anteriormente) entre el extremo del desplazable de $4 .^{a}$ y las muescas del piñón de reenvio del reductor.
e) Apretar el tornillo de fijación de la horquilla.
f) Desmontar la galga de reglaje.
5. Controlar sucesivamente el paso de las velocidades. Desmontar la brida MR. 630-64/21.

TRANSMISION DE CRUCETA SIMPLE

LADO CAJA

LADO RUEDA

CARACTERISTICAS

- Junta de cruceta simple, del lado caja de velocidades.
- Junta de cruceta simple, del lado rueda.
- Montaje: La horquilla de la mangueta estriada (1) debe estar alineada con la horquilla del árbol estriado (2).

PUNTOS PARTICULARES

Par de apriete:

- Tuerca de fijación sobre el buje (cara y rosca engrasadas)

35 a 40 da Nm.

Engrase:

TRANSMISION DE DOBLE CRUCETA

LADO CAJA
A. 37.9

LADO RUEDA

CARACTERISTICAS

[^5]
PUNTOS PARTICULARES

Par de apriete:

- Tuerca de fijación sobre el buje (apoyo y rosca engrasados)

Engrase:

TRANSMISION A BOLAS

LADO CAJA

LADO RUEDA

CARACTERISTICAS

- Junta homocinética a bolas, lado caja velocidades.
- Junta homocinética a bolas, lado rueda.
- Montaje: Posición indiferente de la mangueta estriada con relación al árbol estriado.

PUNTOS PARTICULARES

Par de apriete:

- Tuerca de fijación sobre el buje (apoyo y rosca engrasados) . 35 a 40 da Nm . 4,5 a 5 da Nm .
- Tornillo de fijación de la transmisión sobre la salida de la C.V.

Engrase:

- Grasa

This Page Is Intentionally Blank

I. PIVOTE

CARACTERISTICAS

- Inclinación caída de rueda	Ruedas en "línea recta"	$1^{\circ}+45^{\prime}$
		25^{\prime}
	Ruedas "giradas"	$9^{\circ} 30^{\prime} \pm 1^{\circ} 20^{\prime}$
- Inclinación eje de pivote (no regulable)		15°
- Paralelismo: Apertura de las ruedas hacia adelante		0 a 3 mm .

PUNTOS PARTICULARES

Reglajes:

- Separación entre el retén de estanqueidad y la tuerca casquillo de buje	1,25 a $1,75 \mathrm{~mm}$.
- Separación entre el retén de estanqueidad y el apoyo del rodamiento	1,25 a 1,75 mm.
- Holgura entre el pivote y el brazo	0,1 a 0,4 mm.
- Separación de la parte inferior del eje, con relación al pivote	7,10 a $7,25 \mathrm{~mm}$.

Pares de apriete:

Engrase:

\qquad

II. ARTICULACIONES DE LOS BRAZOS SOBRE LA TRAVIESA

PUNTOS PARTICULARES

- Separación del retén de estanqueidad con relación al apoyo del rodamiento 0,8 a 1 mm .

Pares de apriete:

- Tornillo de fijación de la traviesa . 5 da Nm.
- Tuercas con muescas de fijación de los brazos sobre la traviesa . 5 da Nm.
- Tuercas de fijación de las ruedas
I. CONTROL DEL ANGULO DE CAIDA DE RUEDA

Se debe efectuar este control para una verificación de los brazos después de un golpe.
Pero, si el eje del pivote tiene una holgura excesiva, no se puede efectuar ninguna medida.

1. Verificar que la rueda delantera (del lado del pivote a controlar) no tiene alabeo.

2. Colocar el vehiculo sobre un piso plano y horizontal.

La medida de las alturas se efectúa en la parte delantera y trasera, entre el suelo y la plataforma, a igual distancia de los dos tornillos de fijación de la traviesa ($b=c$) y al lado del frenillo, en "a».

3. Calzar el vehiculo, por debajo de la plataforma, en la parte delantera, para obtener una altura de 207 mm . entre el suelo y el punto "a» a cada lado del vehículo. Utilizar los útiles MR. 630-51/9 a, (altura $=207 \mathrm{~mm}$.).
4. Alinear las ruedas delanteras:
a) Situar la señal "e" grabada sobre la tapa móvil de dirección, al ras de la guia de las rotulas, del lado izquierdo en "d".

b) Para alinear las ruedas sobre un vehiculo que no venga provisto de una dirección con señal grabada sobre la tapa móvil, proceder de la siguiente manera:

Tensar un hilo a la altura del centro de las ruedas, poner este último en contacto con las ruedas, como está indicado en el dibujo (si es necesario, desmontar las faldillas para que no molesten).

Situar la rueda delantera paralela al hilo, girando el volante de dirección para que las cotas "a1" y «a2" sean iguales.
5. Medir el ángulo de caída de rueda, en estas condiciones. Utilizar el aparato 2313-T. El hilo debe situarse en la zona "1\% del aparato. En caso contrario, desmontar el brazo y controlarlo.

OBSERVACION: Si el aparato utilizado es el 2315-T, es imperativo transformarlo en 2313-T. Para esto, montar las plaquetas 2312-T (seguir las indicaciones del constructor).

manual 004-1
6. Elevar el vehículo hasta que las ruedas delanteras se despeguen del suelo.

Virar la rueda, a fondo, el pivote en apoyo sobre el tornillo de tope. Si se trabaja en la rueda derecha, girar hacia la derecha, e inversamente.

Volver a colocar el vehiculo en apoyo sobre el útil MR. 630-51/9 a (altura $=207 \mathrm{~mm}$.)) sobre los calzos.
7. Medir el ángulo de caída de rueda, en estas condiciones. Utilizar el aparato 2313-T. El cable debe estar en la zona «2» del aparato.

En caso contrario, desmontar el brazo y verificarlo.

II. CONTROL Y REGLAJE DEL PARALELISMO DE LAS RUEDAS DELANTERAS

Las ruedas deben estar abiertas hacia adelante. La diferencia entre la parte delantera y la trasera debe ser de 0 a 3 mm . Para efectuar esta operación, es necesario que las alturas delanteras y traseras, bajo chasis, estén reguladas.

1. Colocar las ruedas en linea recta (ver capitulo I, misma operación).
2. Controlar la apertura de las ruedas delanteras:

Utilizar una varilla como las que existen en el comercio. Proceder de la manera siguiente:
Medir en «a» a la altura del eje de las ruedas, la distancia entre los bordes exteriores de las llantas hacia adelante. Señalar con tiza los puntos medidos.
Hacer girar las ruedas, media vuelta hacia adelante y medir, en la parte trasera, la distancia entre las señales (puestas a la misma altura en "bn). Si esta distancia es más pequeña de 0 a 3 mm ., el reglaje es correcto, en caso contrario, proceder al reglaje.

2. Girar a fondo. Verificar que existe una garantia de 5 mm . aproximadamente entre el neumático y el brazo; y una garantia de 1 mm . como minimo entre el batidor y el brazo, del lado opuesto.
En caso contrario, actuar sobre el tornillo (6) de tope de giro, situado sobre el brazo.
3. Controlar el giro de la otra rueda.

IV. CONTROL DE UN BRAZO DELANTERO DESMONTADO

1. Desmontar y despiezar el brazo.
(Ver operación correspondiente).
2. Controlar el brazo:

Posicionar el brazo sobre un montaje de control (montaje MR. 630-51/46).

Colocar la barra B en el mandrinado "c" del eje de pivote.

Colocar el mandril A porta-barra en el mandrinado del cubo.

Hacer bascular el mandril A hasta que las dos barras descansen exactamente sobre el mármol.

Medir la distancia «d 1 » entre las puntas en un extremo, y después la distancia "d $2 n$ del otro extremo.

Estas dos distancias deben ser iguales a 10 mm . mas o menos. En caso contrario, sustituir el brazo.
3. Armar y montar el brazo.
(Ver operación correspondiente).

This Page Is Intentionally Blank

BUJE TRASERO

CARACTERISTICAS

Paralelismo:

- Convergencia de las ruedas hacia adelante (no regulable):
- Vehículos fabricados hasta Enero de 1974 (España) o Marzo de 1969 (Francia)

0 a 8 mm .

- Vehículos fabricados a partir de Enero de 1974 (España) o Marzo de 1969 (Francia)
$0 \pm 4 \mathrm{~mm}$.
- Angulo de caída de rueda (no regulable)

PUNTOS PARTICULARES

Reglaje:

- Distancia del retén de estanqueidad del buje, con relación al apoyo del rodamiento $1_{-0,5}^{+0,5 m}$.

Pares de apriete:

ARTICULACIONES DE LOS BRAZOS SOBRE LA TRAVIESA

A. $\mathbf{4 2 - 5 0}$

PUNTOS PARTICULARES

Pares de apriete:

- Tornillo de fijación de la traviesa

4 a 5 da Nm .

- Tuercas almenadas de fijación de los brazos sobre la traviesa 5 da Nm .
- Tuercas de fijación de las ruedas 4 a 6 da Nm.

I. CONTROL DE LOS BRAZOS TRASEROS SOBRE EL VEHICULO

Estos controles deben ser efectuados sobre un vehículo que ha sufrido un golpe y en el cual se aprecia un comportamiento anormal en carretera, o un desgaste anormal de los neumáticos.

1. Controlar la posición de las ruedas traseras:

Vehículos fabricados hasta 3/1969 (Francia) ó 1/1974 (España).
Las ruedas deben tener una convergencia, hacia adelante, comprendida entre 0 y 8 mm .

Vehiculos fabricados a partir del 3/1969 (Francia) ó 1/1974 (España).
Las ruedas pueden tener una apertura o una convergencia hacia adelante, comprendidas entre 0 y 4 mm .

Para el control, es necesario que las alturas delanteras y traseras del vehiculo estén reguladas (ver operación correspondiente).

Medir a la altura del eje de las ruedas, la distancia entre los bordes exteriores de las llantas, en la parte delantera. Señalar con tiza los puntos medidos.
Girar, media vuelta, las ruedas del vehiculo, y medir, en la parte trasera, la distancia entre las dos señales (puestas a la misma altura que anteriormente). Utilizar una varilla vendida en el comercio.

Si la convergencia o divergencia no están dentro de las tolerancias:
Uno de los brazos, o los dos brazos, están falseados. En este caso, es necesario:

- controlar la posición de los brazos traseros sobre el vehículo (ver párrafos 3 a 7 , misma operación),
- o desmontar el brazo y verificarlo sobre un banco (ver capitulo II, misma operación).

Si la convergencia o divergencia están en las tolerancias: Es necesario verificar el ángulo de caída de rueda.
2. Controlar el ángulo de caida de las ruedas traseras:
a) Verificar y establecer, si es necesario, la presion de los neumáticos.
Colocar el vehiculo en una superficie plana y horizontal.
b) Calzar el vehículo de manera a obtener una altura de 295 mm ., por debajo de la plataforma en «a», en el centro de los dos tornillos de fijación de la traviesa y al lado del frenillo.
Utilizar para esta operación los calzos MR. 630-51/9 a (altura $=285 \mathrm{~mm}$.), equipados con galgas de 10 mm . de espesor.

c) Desmontar el guardabarros trasero del lado afectado (si es necesario).
d) Controlar el ángulo de caida de rueda: utilizar el aparato 2313-T. El hilo debe estar en la zona "3") del aparato.
En caso contrario, desmontar el brazo y verificarlo (ver operación correspondiente).

NOTA: Es posible transformar un aparato 2315-T en 2313-T montando las plaquetas 2312-T. Seguir las indicaciones del constructor.

CONTROL DE LA POSICION DE LOS BRAZOS TRASEROS

OBSERVACION: Puede ser necesario, en caso de desgaste anormal de uno de los neumáticos, verificar la convergencia de cada rueda trasera.
3. Colocar el vehiculo sobre una superficie plana y horizontal; las alturas delanteras y traseras deben estar reguladas correctamente (ver operación correspondiente).
4. Colocar el útil MR. 630-51/47 como está indicado en la figurà correspondiente.

Aflojar la varilla móvil E y separarla de la llanta.
Poner, la varilla A, en contacto con la llanta, a la altura del eje del buje, haciendo deslizar la horquilla C en su soporte B.
Inmovilizar la horquilla mediante el tornillo D.

Operar de la misma manera sobre la otra rueda, con la otra parte del aparato.

A cada lado, poner la varilla móvil E en contacto con la llanta. Leer, en cada calibre, la cifra situada enfrente de la señal "a" (ver figura en la página siguiente).
Tomar nota de esta cifra, precisando:

- 01, en caso de divergencia,
- ó P1, en caso de convergencia.

5. Quitar las horquillas C y hacer girar las ruedas media vuelta exactamente.
6. Volver a efectuar las operaciones del párrafo 4. Tomar nota de nuevo, de las cifras indicadas sobre los calibres:

- 02: en caso de divergencia.
- P2: en caso de convergencia.

7. Determinar el valor del paralelismo para cada rueda:

a) Las dos medidas indican divergencia: Efectuar la medida de las dos lecturas:

2315.1

Las dos medidas indican convergencia: Efectuar la medida de las dos lecturas:
$\frac{P 1+P 2}{2}$
b) Una de las dos medidas indica divergencia y la otra convergencia:

Se pueden presentar dos casos:

O es superior a \mathbf{P}

P es superior a \mathbf{O}

La posición del brazo será:

En los vehículos fabricados hasta Marzo 1969 en Francia y hasta Enero 1974 en España, cada rueda debe tener una convergencia comprendida entre 0 y 4 mm .

En los vehículos fabricados a partir de Marzo 1969 en Francia y a partir de Enero 1974 en España, cada rueda puede tener una divergencia o una convergencia comprendidas entre 0 y 2 mm .

Es necesario sustituir los brazos que no tengan la medida:
$\frac{O 1+O 2}{2} \circ \frac{P 1+P 2}{2} \circ \frac{O-P}{2} \circ \frac{P-O}{2}$
comprendida entre: 0 y 4 mm . (Vehículos fabricados hasta Enero de 1974 en España y hasta Marzo. 1969 en Francia)
o: 0 y 2 mm . (Vehículos fabricados a partir de Enero de 1974 en España y a partir de Marzo 1969 en Francia).

OBSERVACION:

Las diferencias medidas entre 01 y 02 ó 0 y P , tomadas en el párrafo 7 , provienen únicamente del alabeo de la rueda. La diferencia de los valores leídos sobre el aparato es el doble del alabeo real de la llanta en los puntos considerados.
Si es superior a 4 mm . (lo que corresponde a un alabeo medido de $\frac{4}{2}=2 \mathrm{~mm}$.), es necesario verificar la rueda, porque el alabeo real de una llanta no debe sobrepasar 2 mm .

II. CONTROL DE UN BRAZO TRASERO DESMONTADO

1. Desmontar el brazo (ver operación correspondiente).
2. Despiezar el brazo (ver operación correspondiente).

No es necesario desmontar las levas de reglaje.
3. Controlar el brazo:

Posicionar el brazo sobre un montaje de control (montaje MR. 630-51/46).
Colocar el buje en el mandrinado del plato E, y hacer descansar el plato sobre un mármol.
Colocar el mandril A en el mandrinado del buje.
Calzar en altura el buje hasta que el plato E asiente perfectamente sobre el mármol.

Controlar la convergencia (ver figura 1):

a) Colocar la varilla inclinada B del mandril A en el plano de las lineas de soldadura del brazo.
b) Mediante un gramil, tomar nota de la altura «h1» de una punta, hacer bascular el mandril, media vuelta y tomar nota de la medida "h2" de esta misma punta: La diferencia de las dos alturas debe estar comprendida entre 0 y $1,2 \mathrm{~mm}$., y la altura más baja puede estar del lado eje del buje o del lado eje de articulación del brazo.

Controlar el ángulo de caida de rueda (ver figura 2):
a) Colocar la 'varilla B del mandril A perpendicularmente a la linea de soldadura del brazo.
b) Mediante un gramil, tomar la medida «h3n de una de las puntas, hacer bascular el mandril, media vuelta y tomar de nuevo la medida "h4" de esta misma punta:

La diferencia de las dos alturas debe estar comprendida entre 0 y $3,5 \mathrm{~mm}$. La altura más pequeña debe estar situada del lado de la horquilla porta-cuchillo. En caso contrario, sustituir el brazo.
4. Armar el brazo:
(Ver operación correspondiente).
5. Montar el brazo:
(Ver operación correspondiente).

Puesta al día N. ${ }^{\circ} 1$ al Manual 854-1 (Correctivo)
ESQUEMA DE LA SUSPENSION

CARACTERISTICAS

Suspensión:

- Tipo "con interacción" (unión de los brazos de suspensión de un mismo lado del vehículo por intermedio del tubo de suspensión) en los vehículos A Todo Tipo fabricados \longrightarrow 7/1976.
- Tipo "sin interacción" sobre: AM 3, AMF 3, AMC 3, 7/1976 \rightarrow 9/1978

$$
\begin{aligned}
& \text { AK (serie AK), } 7 / 1976 \rightarrow 2 / 1978 \\
& \text { AY (serie CD), } 2 / 1978 \rightarrow
\end{aligned}
$$

Amortiguadores (frotadores):

- De fricción sobre las ruedas delanteras para todos los vehículos que no montan amortiguadores hidráulicos.

Amortiguadores:

- Hidráulicos sobre las ruedas traseras para los vehículos AZ • AY - AZU y AY CA (Mehari) \longrightarrow 9/1975.
- Hidráulicos sobre las cuatro ruedas para los vehículos Todo Tipo, 9/1975 \longrightarrow

Batidores (amortiguadores de inercia):

En las cuatro ruedas para todos los vehículos fabricados hasta Noviembre de 1970.
En las ruedas delanteras para los vehículos 2 CV 4, DYANE 4 y Furgoneta AZU, fabricados en 11/1970 \longrightarrow 9/1975.
En las ruedas delanteras para los vehículos 2 CV 6 y DYANE 6, fabricados en 5/1971 \rightarrow 9/1975.
En las ruedas delanteras para los vehículos AY-CA (MEHARI) y Furgoneta AK, 9/1971 \rightarrow 9/1975.
En las ruedas delanteras para los vehículos AM, 9/1971 \longrightarrow 11/1973.
El montaje de los amortiguadores hidráulicos en las cuatro ruedas provoca la supresión de los batidores sobre los vehículos
Todo Tipo, 9/1975

Barra estabilizadora:

Barra estabilizadora en la parte delantera para los vehículos:

$$
\begin{aligned}
& \text { AM 3/1969 } \longrightarrow 9 / 1978 \\
& \text { AMB 9/1969 } \longrightarrow 9 / 1978
\end{aligned}
$$

Alturas:

ATENCION: La medida de las alturas del vehículo se efectúa, en ambos lados, para la parte delantera y la parte trasera, entre el suelo y la plataforma, a igual distancia de los dos anillos de fijación de la traviesa y por el lado del freno de tornillo.

Tipo del vehículo	Neumáticos	Alturas delanteras (en mm.)	Alturas traseras (en mm.)
AZ \rightarrow 7/1969	125-380 X	$195 \pm 2,5$	$280 \pm 2,5$
	130-380 X	$208 \pm 2,5$	$291 \pm 2,5$
AZ (2CV 4 y 2 CV 6)	125-380 X	$195 \pm 2,5$	$280 \pm 2,5$
AY (Dyane)	125-380 X	$195 \pm 2,5$	$280 \pm 2,5$
AY - CA (Mehari)	$\begin{gathered} 135-380 \times \\ 135 \cdot 380 \times M+S \end{gathered}$	236 ± 5	346 ± 5
AZU	125-380 X	$205 \pm 2,5$	$335 \pm 2,5$
AK	135-380 X	$212 \pm 2,5$	$347 \pm 2,5$
AY (serie CD)	135 SR 15 ZX	212 ± 5	317 ± 5
AM	125-380 X	$190 \pm 2,5$	$280 \pm 2,5$
AMB	135-380 X	$195 \pm 2,5$	$290 \pm 2,5$

Tubos de suspensión montados en los vehículos AZ y AZU:

TIPO DE VEHICULO		Longitud libre de los muelles y ϕ del alambre (en mm.)		Longitud de los tirantes (en mm.)		Longitud de los terminales A (en mm.)	
		DEL.	TRA.	DEL.	TRA.	DEL.	TRA.
	$\begin{aligned} & \text { AZ 9/1962 } \rightarrow 3 / 1963 \\ & \text { AZU 6/1955 } \rightarrow 3 / 1963 \\ & \hline \end{aligned}$	$\begin{gathered} 185 \\ 14,35 \\ \hline \end{gathered}$	$\begin{gathered} 170 \\ 15,25 \\ \hline \end{gathered}$	623	644	191	173
	$\left.\begin{array}{l}\text { AZ } \\ \text { AZU }\end{array}\right\} 3 / 1963 \rightarrow 9 / 1965$	$\begin{aligned} & 185 \\ & 14,8 \end{aligned}$	$\begin{gathered} 170 \\ 15,25 \end{gathered}$	600	644	173	173
	$\begin{aligned} & \left.\begin{array}{l} \text { AZ } 9 / 1965 \rightarrow 2 / 1970 \\ \text { AZU } 9 / 1965 \rightarrow 9 / 1972 \\ \text { AZ (2 CV } 4) \\ \text { AZ (2 CV } 6) \end{array}\right\} 2 / 1970 \rightarrow 10 / 1971 \end{aligned}$	$\begin{aligned} & 185 \\ & 14,8 \end{aligned}$	$\begin{gathered} 170 \\ 15,25 \end{gathered}$	600	642	173	182
	$\left.\begin{array}{l}\text { AZ (2 CV 4) } \\ \text { AZ (2 CV 6) }\end{array}\right\} 10 / 1971 \rightarrow 9 / 1972$	$\begin{gathered} 193 \\ 15,25 \end{gathered}$	$\begin{gathered} \hline 170 \\ 15,25 \\ \hline \end{gathered}$	600	642	173	182
	AZU 9/1972 \rightarrow 2/1978	$\begin{gathered} 193 \\ 15,25 \end{gathered}$	$\begin{gathered} 170 \\ 15,25 \end{gathered}$	593	611	173	182
	$\left.\begin{array}{l}\text { AZ (2 CV 4) } \\ \text { AZ (2 CV 6) }\end{array}\right\} 9 / 1972 \rightarrow$	$\begin{gathered} 193 \\ 15,25 \end{gathered}$	$\begin{gathered} 170 \\ 15,25 \end{gathered}$	593	632	173	182
	Tubos de suspensión montados en los vehículos DYANE - DYANE 4 y DYANE 6						
	AYA 8/1967 $\rightarrow 3 / 1968$ AYA $23 / 1968 \longrightarrow 10 / 1968$ AYA $31 / 1968 \rightarrow 10 / 1968$ AYB 10/1968 \rightarrow 12/1968	$\begin{aligned} & 185 \\ & 14,8 \end{aligned}$	$\begin{gathered} 170 \\ 15,25 \end{gathered}$	600	642	173	182
	AYA 2 10/1968 \longrightarrow AYB 12/1968 \rightarrow 9/1972	$\begin{gathered} 193 \\ 15,25 \end{gathered}$	$\begin{aligned} & 170 \\ & 15,25 \end{aligned}$	600	642	173	182
	$\left.\begin{array}{l}\text { AYA } \\ \text { AYB }\end{array}\right\} 9 / 1972 \rightarrow$	$\begin{gathered} 193 \\ 15,25 \end{gathered}$	$\begin{gathered} 170 \\ 15,25 \end{gathered}$	593	632	173	182

Tubos de suspensión montados en los vehículos AK

AK Todo Tipo 9/1962 $\rightarrow 5 / 1968$	225	238		618		
$\ldots . .5 / 1968 \rightarrow 7 / 1976$	17,15	17,95	642	600	197	197

Tubos de suspensión montados en los vehículos AM

$\mathrm{AM} \rightarrow 3 / 1969$	192 17,15	205 17,95	623	623	197	197
	195 18,2	243 19	623	644	197	197
$\mathrm{AM} 3 / 1969 \rightarrow 6 / 1972$	160 18,2	222 18,65	605	623	197	197
	160 18,2	222 18,65	575	611	197	197
$\mathrm{AMB} 6 / 1972 \rightarrow 7 / 1976$	160	222	611	632	197	197

PUNTOS PARTICULARES

Amortiguadores:

Montaje:	Amortiguadores BOGE: El cuerpo del amortiguador, por el lado del tubo de suspensión, referencia (punteado) dirigido hacia lo alto y los orificios de evacuación de la falda orientados hacia abajo.
- Longitud	Amortiguadores ALLINQUANT o LIPMESA: El cuerpo del amortiguador, por el lado del brazo de suspensión, referencia dirigida hacia lo alto. (entre ejes) de un amortiguador comprimido:
	- Vehículos AZ - AY - AYCA (MEHARI)-AZU: . 450 mm .
	- Vehículos AK: . 349 mm .
	- Vehículos AM: . 375 mm.
	- Vehículos AY (serie CD): . 526 mm.
- Longitud	(entre ejes) de un amortiguador delantero comprimido:
	- Vehículos A. TT. excepto AY (serie CD): . 349 mm .
	- Vehículos AY (serie CD): . 354 mm .

Tubos de suspensión:

- Montaje - Referencia "AV" de la cubierta dirigido hacia la parte delantera.

A. $43-50$
- Reglaje: El vehículo tiene que estar vacío, en estado de marcha, situado en un suelo plano y horizontal, con los neumáticos inflados correctamente (ver las Notas Técnicas correspondientes para los valores d: las presiones).
- Posicionamiento del extremo delantero del tubo de suspensión:
$\mathrm{L} 1=5 \mathrm{~mm}$. mínimo
- Posicionamiento del extremo trasero del tubo de suspensión: Regularlo para obtener un juego $\mathrm{L} 2=0$ a 2 mm . entre el tope antigalope y el extremo.
Juego entre el tope de desplazamiento y el brazo de suspensión delantera: 3 a 6 mm .
Barra estabilizadora: Garantía de desplazamiento entre la barra estabilizadora y el brazo 6 mm .
Lateral de la barra estabilizadora antes del apriete de las bridas $0 \pm 5 \mathrm{~mm}$.

Frotadores:
\qquad

Pares de apriete:

- Tuercas de fijación de los batidores 6 m.daN
- Tuercas de fijación de los topes de desplazamiento delanteros

4a5m.daN

- Tornillos de fijación de los soportes de amortiguadores delanteros

4 m.daN

- Ejes de amortiguadores 20 m.daN
- Tuercas de fijación de amortiguadores

3,5 a 4 m.daN

- Tuercas de fijación de los tubos de suspensión . 17,5 a $21,5 \mathrm{~m}$.daN
- Tornillos de fijación de las abrazaderas de la barra estabilizadora
$6 \mathrm{~m} . \mathrm{daN}$

SUSPENSION SIN INTERACCION

Tubos de suspensión montados en los vehículos AM

AM3 $7 / 1976 \rightarrow 9 / 1978$	172 18	210,45 17,95	590	608
AMF3 $\} 7 / 1976 \rightarrow 9 / 1978$	172	239,7	575	629
AMC3 $\} \rightarrow 28,75$				

Tubos de suspensión montados en los vehículos AK

$\mathrm{AK} 7 / 1976 \rightarrow 2 / 1978$	168	260	575	608

Tubos de suspensión montados en los vehículos ACADIANE

AY (serie CD) $2 / 1978 \rightarrow$	168	260	520	792

This Page Is Intentionally Blank
Puesta al día N. ${ }^{\circ} 1$ al Manual 854-1 (Correctivo)
ESQUEMA DE LA SUSPENSION

CARACTERISTICAS

Suspensión:

- Del tipo a interacción (unión de los brazos de suspensión de un mismo lado del vehículo por el intermediario del tubo de suspensión) sobre vehículos A todo tipo salidos $\rightarrow 7 / 1976$.
- Tipo sin interacción sobre: AM (C-8) desde 7/1976 \longrightarrow 7/1977

AK desde 7/1976 $\longrightarrow 4 / 1978$
AYU desde 2/1978 \longrightarrow

Amortiguadores:

- Hidráulicos en las ruedas traseras para los vehículos: AZ - AY y AYCA (Mehari) \longrightarrow 9/1975
- Hidráulicos sobre las cuatro ruedas para los vehículos todo tipo 9/1975

Frotadores:

- De fricción sobre las ruedas delanteras para todos los vehículos que no están equipados de amortiguadores hidráulicos.

Barra estabilizadora:

- Barra estabilizadora en la parte delantera en los vehículos AM (C-8) T.T. desde 3/1970 \rightarrow 7/1977

Batidores (amortiguadores de inercia):

- En las cuatro ruedas para todos los vehículos fabricados hasta Julio de 1971.
- En las ruedas delanteras para todos los vehículos fabricados a partir de Julio de $1971 \longrightarrow$ 9/1975.
- El montaje de amortiguadores hidráulicos sobre las cuatro ruedas ocasiona la suspensión de los batidores sobre los vehículos todo tipo 9/1975

Alturas:

ATENCION: La medida de las alturas del vehículo, se efectúa del lado derecho e izquierdo, en la parte delantera y en la trasera, entre el suelo y la plataforma a igual distancia de los dos tornillos de fijación de la traviesa y al lado del frenillo de los tornillos.

Tipo de vehículo	Neumáticos	Alturas delanteras (en mm.)	Alturas traseras (en mm.)
AZL - 2 CV 6 - AY - AYB	$125 \times 380 \mathrm{ZX}$	$195 \pm 2,5$	$280 \pm 2,5$
	$135 \times 380 \mathrm{ZX}$	$208 \pm 2,5$	$291 \pm 2,5$
	$135 \times 380 \mathrm{ZX}$ $135 \times 380 \times \mathrm{X}+\mathrm{S}$	236 ± 5	346 ± 5
AK	$125 \times 380 \mathrm{ZX}$	$205 \pm 2,5$	$335 \pm 2,5$
AYU	$135 \times 380 \mathrm{ZX}$	$212 \pm 2,5$	$347 \pm 2,5$
AM 3	135 SR 15 ZX	212 ± 5	317 ± 5
AMF 3	$135 \times 380 \mathrm{ZX}$	$190 \pm 2,5$	$280 \pm 2,5$
AMU 3	$135 \times 380 \mathrm{ZX}$	$195 \pm 2,5$	$290 \pm 2,5$

Tubos de suspensión montados sobre los vehículos AZL y AZU.

TIPO DE VEHICULO	Longitud libre de los muelles y ϕ del alambre		Longitud de los tirantes (en mm.)		Longitud de los casquillos	
	Delantero	Trasero	Delantero	Trasero	Delantero	Trasero
$\begin{array}{llll} \text { AZL } & \mapsto & 1 / 1959 & \longrightarrow \\ 4 / 1966 \\ \text { AZU } & \longmapsto & 5 / 1958 & \rightarrow \\ 7 / 1969 \end{array}$	$\begin{aligned} & 122,8 \\ & 14,75 \end{aligned}$	$\begin{gathered} 180 \\ 15,15 \end{gathered}$	605	644	173	173
AZL $\longmapsto 4 / 1966 \rightarrow$ 5/1969	$\begin{aligned} & 122,8 \\ & 14,75 \end{aligned}$	$\begin{gathered} 180 \\ 15,15 \end{gathered}$	605	644	173	182
AZU \longrightarrow 7/1969	$\begin{aligned} & 122,8 \\ & 14,75 \end{aligned}$	$\begin{gathered} 180 \\ 15,15 \end{gathered}$	605	623	173	182
AZL $\longmapsto 5 / 1969 \rightarrow 1 / 1971$	$\begin{gathered} 180 \\ 15,15 \end{gathered}$	$\begin{aligned} & 122,8 \\ & 14,75 \end{aligned}$	605	644	173	182
AZL $\longmapsto 1 / 1971$	$\begin{gathered} 193 \\ 15,15 \end{gathered}$	$\begin{gathered} 180 \\ 15,15 \end{gathered}$	605	644	173	182

Tubos de suspensión montados sobre los vehículos 2 CV 6, DYANE y DYANE 6.

AX	$\longmapsto 10 / 1966$		193	180			
AY	$\longmapsto 7 / 1968$	15,15	15,15	605	604	173	182
AYB	$\longmapsto 3 / 1972$						

Tubos de suspensión montados sobre vehículos AK.

Botes de suspensión montados sobre vehículos Al:3.

AM	\rightarrow	3/1969	$\begin{gathered} 192 \\ 17,15 \end{gathered}$	$\begin{gathered} 205 \\ 17,95 \end{gathered}$	623	623	197	197
AM	3/1969	$\longrightarrow 6 / 1972$	$\begin{aligned} & 160 \\ & 18,2 \end{aligned}$	$\begin{gathered} 222 \\ 18,65 \end{gathered}$	605	623	197	197
AM	6/1972	$\rightarrow 7 / 1976$	$\begin{array}{r} 160 \\ 18,2 \end{array}$	$\begin{gathered} 222 \\ 18,65 \end{gathered}$	575	611	197	197
AMB	\rightarrow	6/1972	$\begin{aligned} & 195 \\ & 18,2 \end{aligned}$	$\begin{gathered} 243 \\ 19 \end{gathered}$	623	644	197	197
AMB	6/1972	$\longrightarrow \quad 7 / 1976$	$\begin{aligned} & 160 \\ & 18,2 \end{aligned}$	$\begin{gathered} 222 \\ 18,68 \end{gathered}$	611	632	197	197

HO PUNTOS PARTICULARES

Amortiguadores:

- Montaje: Amortiguadores BOGE: EI cuerpo de amortiguador, lado tubo de suspensión, referencia (señal de bola) dirigida hacia arriba y los orificios de evacuación de la falda orientados hacia abajo.
- Amortiguadores ALLINQUANT o LIPMIESA: EI cuerpo de amortiguador, lado brazo de suspensión, referencia dirigida hacia arriba Longitud (entre ejes) de un amortiguador trasero comprimido:
- Vehículos AZ - AY - AY-CA (MEHARI)-AZU 450 mm .
- Vehículos AK 349 mm .
- Vehículos AM 375 mm
- Vehículos AYU 526 mm .
- Longitud (entre ejes) de un amortiguador delantero comprimido:
- Vehículos A TT, salvo AYU

349 mm .

- Vehículo AYU

354 mm .
Tubos de suspensión:

- Montaje: Referencia "AV" sobre la envoltura dirigida hacia la parte delantera.

- Reglaje: El vehículo deberá estar vacío de carga, en marcha, situado en un piso plano y horizontal y los neumáticos inflados correctamente (ver Notas Técnicas correspondientes para los valores de las presiones).
- Posicionamiento del terminal delantero del tubo de suspensión

L $1=5 \mathrm{~mm}$. mínimo

- Posicionamiento del terminal trasero del tubo de suspensión: Regularlo para obtener un juego L $2=0$ a 2 mm . entre el tope anti-cabeceo y el terminal.
- Juego entre tope de desplazamiento y brazo de suspensión delantera

3 a 6 mm .

Barra estabilizadora:

- Garantía de desplazamiento entre barra estabilizadora y brazo . 6 mm.
- Lateral de barra estabilizadora antes del apriete de las bridas . 0 .5 mm.

BATIDOR
A. 43.53

Frotadores:

- Tarado

2,3 a 2,7 da Nm.

Pares de apriete:

uercas de fijación de los batidores	6 daNm .
Tuercas de fijación de los topes de desplazamiento delantero	4 a 5 daNm .
- Tornillos de fijación de los soportes de amortiguadores delanteros	4 da Nm
- Ejes de amortiguadores	20 da Nm .
- Tuercas de fijación de los amortiguadores	3,5 a 4 da
- Tuercas de fijación de los tubos de suspensión	17,5 a 21,5 da
Tornillos de fijación de las bridas de la barra	

SUSPENSION SIN INTERACCION

Botes de suspensión montados sobre vehículos AM.

| AM 3 $7 / 1976 \rightarrow 7 / 1977$ | 172
 18 | 210,45
 17,95 | 590 | 608 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMF 3 | $7 / 1976 \rightarrow 7 / 1977$ | 172
 18 | 239,7
 18,75 | 575 | 629 |

Botes de suspensión montados sobre vehículos AK.

| $\mathrm{AK} 7 / 1976 \rightarrow 4 / 1978$ | 168 | 260 | 575 | 608 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Botes de suspensión montados sobre vehículos Dyane 6-400 (AYU).

| $\mathrm{AY}($ serie CD) $2 / 1978 \rightarrow$ | 168 | 260 | 520 | 792 |
| :---: | :---: | :---: | :---: | :---: | :---: |

This Page Is Intentionally Blank

I. CONTROL DE LAS ALTURAS

1. Preparar el vehiculo (en orden de marcha). Debe estar equipado, con exclusión de cualquier otra carga, de:

- la rueda de repuesto (colocada en su sitio),
- la herramienta,
- cinco litros de gasolina, aproximadamente, en el depósito.

2. Verificar y establecer la presión de los neumáticos, si es necesario (ver Notas Técnicas correspondientes).

Colocar el vehiculo en una superficie plana y horizontal, y con las ruedas orientadas en linea recta.
3. "Balancear» el vehiculo mediante los paragolpes y dejarlo que se estabilice.

PARTE TRASERA 12123

4. Medir las alturas entre el suelo y la plataforma, en el punto "a" entre las dos cabezas de los tornillos de fijación de la traviesa a igual distancia de cada una de ellas y al lado del frenillo.

Para la medida de las alturas delanteras y traseras, emplear el útil 2305-T, como está indicado en las figuras correspondientes.

II. REGLAJE DE LAS ALTURAS

Si los frotadores Q los amortiguadores han sido desmontados, efectuar el reglaje de las alturas antes del montaje de los tornillos de fijación de los cárteres de los frotadores, o del montaje de los amortiguadores.
Las tuercas de los ejes de fijación de los amortiguadores deben ser apretadas solamente cuando el vehículo esté en el suelo para evitar la deterioración de los silenblocs.
Si se regulan las alturas como está indicado en el método correspondiente, la repartición de.los pesos, es correcta.

1. Preparar el vehiculo en orden de marcha. Debe estar equipado, con exclusión de cualquier otra carga de:

- la rueda de repuesto (colocada en su sitio correspondiente),
- la bolsa de herramienta,
- cinco litros de gasolina, en el depósito.

2. Verificar y establecer, si es necesario, la presión de los neumáticos. (Ver Notas Técnicas correspondientes).
3. Regular las alturas delanteras, roscando o desenroscando los tirantes delanteros. Utilizar la llave 3455-T o la llave $3455-\mathrm{T}$ bis (que se monta en los dos planos del tirante) y la llave $3456-\mathrm{T}$.
Excluir cualquier otro útil, en particular las llaves de grifa que rayan e inician una ruptura.
Sujetar, el tubo de suspensión, con la mano porque su rotación podria desregular los tirantes traseros.
4. Regular las alturas traseras, roscando o desenroscando los tirantes traseros. Si la corrección es importante, las alturas delanteras se encontrarán de nuevo fuera de medida. Actuar nuevamente sobre los tirantes delanteros para corregir el reglaje. Utilizar la llave $3455-\mathrm{T}$ o $3455-\mathrm{T}$ bis y la llave 3456-T.
Sujetar el tubo de suspensión con la mano para evitar desregular los tirantes delanteros.
5. Controlar las alturas delanteras y traseras despues de cada reglaje.
6. Controlar la holgura "j» entre el terminal (3) de reglaje y el tope elástico trasero (1) que debe ser de 0 a 2 mm . Si es necesario, regular la posición del terminal (3), actuando sobre las tuercas (2) hasta obtener esta holgura.

III. REGLAJE DE LOS TOPES DE RECORRIDO DELANTEROS

7. Con las alturas delanteras y traseras reguladas, asegurarse que existe entre los topes de goma (5) y los topes (4) de recorrido de los brazos, una distancia "a" = 3 a 6 mm .
Realizar esta condicion, colocando chapas de reglaje (6) de espesor apropiado entre el tope de goma y el soporte sobre el chasis.

DIRECCION

CARACTERISTICAS

Dirección de cremallera:

- Paralelismo: Abertura de las ruedas hacia adelante 0 a 3 mm .- Angulo de giro (regulable)34° a 35°
- Garantía entre el neumático y el brazo del lado de giro 5 mm .
- Garantía entre el brazo y el batidor del lado opuesto al giro 1 mm .
- Diámetro de giro entre paredes (aproximadamente) $10,70 \mathrm{~m}$.
- Relación de desmultiplicación con volante $\phi 430$\{ Furgoneta 2 CV1/13
(Vehículos todo tipo (excepto furgoneta 2 CV) 1/14
- Relación de desmultiplicación con volante $\phi 390$ $\{$ Vehículos todo tipo $1 / 17$

Reglajes:

- Juego del empujador de la cremallera (en el punto más duro)

0,1 a $0,25 \mathrm{~mm}$.

- Juego de las rótulas (lado palanca y lado cremallera): Roscar la tuerca a fondo, después aflojarla $1 / 6$ de vuelta y frenarla mediante un pasador.

Pares de apriete:

- Tuerca del piñón de cremallera . 10 a 14 da Nm.
- Tuerca "Nylstop" de fijación de las barras sobre las rótulas . 4 da Nm.
I. CONTROL Y REGLAJE DE LA ABERTURA DE LAS RUEDAS DELANTERAS

A. 441

A. 44-1

Las ruedas tienen que abrir hacia adelante de 0 a 3 mm . Para realizar esta operación, es necesario que las alturas delantera y trasera, bajo el chasis, estén reguladas. (Ver operación correspondiente).

1. Colocar las ruedas como para circular en línea recta.

2. Controlar la abertura de las ruedas delanteras:

Utilizar una cala graduada de la que exista varios modelos en el comercio.
Proceder de la forma siguiente:
Medir en "a», a la altura del eje de las ruedas, la distancia entre los bordes exteriores de las llantas, en la parte delantera. Señalar con tiza los puntos medidos.
Hacer avanzar el vehiculo para que las ruedas giren a media vuelta y medir, en la parte trasera, la distancia entre las marcas (señalar a la misma altura en "b"). Si esta distancia es menor de 0 a 3 mm ., el reglaje es correcto. De lo contrario, proceder al reglaje.
3. Regular la abertura de las ruedas delanteras:

Sin desmontar las aletas, aflojar las tuercas (2) de los tornillos de bloqueo de los manguitos (4). derecho e izquierdo. Girar cada manguito igualmente, para obtener el reglaje.

NOTA: Cada vuelta efectuada sobre el manguito, hace variar la posición de la rueda de 6 a 7 mm .

Comprobar que las partes enroscadas de la barra (1) y del terminal (3), en el manguito (4), son iguales ($\mathrm{d} 1=\mathrm{d} 2 \pm 2 \mathrm{~mm}$.).

Orientar verticalmente las bridas (5) de apriete de los manguitos (4), estando los tornillos de fijacion orientados hacia arriba. La posicion de la ranura "c" es indiferente siempre que los puntos "e" no estén situados frente a dicha ranura.
Repartir igualmente la garantia "f" de desplazamiento de las rotulas. Apretar las tuercas (2) de los tornillos de bloqueo de los manguitos a 1 daNm .

II. REGLAJE DEL GIRO

NOTA: Para efectuar, esta operación, es preciso que los bastidores delantero y trasero, bajo el chasis, estén regulados.
(Ver operación correspondiente).

1. Colocar el vehiculo en un piso plano y horizontal.
2. Girar a fondo. Comprobar que existe una garantia de 5 mm . aproximadamente entre el neumatico y el brazo, y una garantía de 1 mm . mínimo entre el batidor y el brazo, en el lado opuesto.

En el caso contrario, actuar sobre el tornillo (1) de tope de giro, situado sobre el brazo.
3. Controlar el giro de la otra rueda.
Puesta al dia N. ${ }^{\sim} 1$ al Manual ४b4-1 (Correctivo)
ESQUEMA DEL CIRCUITO DE FRENADO

CARACTERISTICAS

Bomba principal - Bombines de rueda:

Bomba y bombines que se montan en los vehículos $A Z$ y AZU:

Bomba y bombines que se montan en los vehículos DYANE:

Bomba y bombines que se montan en los vehículos AK:

AK	$\rightarrow 5 / 1968$	22	28,57	19
AK	$5 / 1968 \rightarrow 6 / 1973$	20,6	28,57	19
AK	$7 / 1973 \rightarrow 10 / 1976$	19	28,57	17,5

Bomba y bombines que se montan en los vehículos AM:

| AM | $\rightarrow 9 / 1969$ | 20,6 | 28,57 | 17,5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| AMB | $\rightarrow 9 / 1969$ | 20,6 | 28,57 | 19 |

Bomba, pistón de estribo y bombines que se montan en los vehículos AM, AY y AZ con frenos de disco en la parte delantera (líquido verde LHM):

* Vehículos equipados con bomba de frenos de deboble ceirceutituo sole consunte

Pares de apriete:

- Tuercas de fijación de los platos de frenos

3,8 a 4,2 m.daN

- Tuercas de fijación de los tambores de frenos delanteros $\phi=7 \mathrm{~mm}$.

2,5 m.daN

- Tornillos de fijación de los tambores de frenos delanteros $\phi=9 \mathrm{~mm}$. 4,5 a $5 \mathrm{~m} . \mathrm{daN}$
- Tuerca de fijación del rodamiento del árbol diferencial

12 a 14 m.daN

- Casquillo tuerca de fijación del rodamiento de soporte:
- Montaje antiguo (casquillo tuerca dentro del soporte) . 10 a 12 m.daN
- Montaje moderno (casquillo tuerca sobre el soporte) 6 a $10 \mathrm{~m} . \mathrm{daN}$
- Tuerca de mangueta del buje trasero (cara y roscas engrasadas) 35 a $40 \mathrm{~m} . \mathrm{daN}$
- Tuerca tapón del rodamiento de buje trasero (cara y roscas engrasadas)

35 a $40 \mathrm{~m} . \mathrm{daN}$

- Racores de los tubos de alimentación de frenos

0,6 a $0,8 \mathrm{~m} . \mathrm{daN}$

PEDALERAS

Reglajes comunes:

- Holgura de seguridad en la bomba de frenos
$J=0,5$ a 1 mm .
- Holgura en el pedal $\mathbf{G}=\mathbf{5} \mathbf{m m}$.
- Contactor de stop: las lámparas de stop se encienden en cuanto empieza a desplazarse el pistón de la bomba.

Alturas de los pedales:

- Pedalera que se monta en los vehículos AZ . AY . MEHARI . AZU • AK $\rightarrow 5 / 1973$, y los vehículos $A M \rightarrow$ 9/1969.

La altura del pedal medida desde el ángulo exterior del patín al piso "sin la alfombra", tiene que ser de:

$$
H=130 \pm 5 \mathrm{~mm} .
$$

- Pedalera que se monta en los vehículos AZ A AY MEHARI AZU AK 7/1973 \rightarrow 10/1976.

La altura del pedal medido desde el ángulo exterior del patín al piso "sin alfombra", tiene que ser de:

$$
H=130 \pm 5 \mathrm{~mm} .
$$

PEDALERAS

Pedalera que se monta en los vehículos AM con frenos de disco: 9/1969 \rightarrow 10/1971

Pistón 2 apoyando en " a ".
Pistón 1 apoyando en " b ".

$$
\mathrm{J}=2 \mathrm{~mm} . \text { mínimo }
$$

La altura de pedal medida desde el ángulo exterior del patín al piso "sin alfombra" tiene que ser de:

$$
\mathrm{H}=125 \pm 2,5 \mathrm{~mm} .
$$

La altura del pedal medida desde el ángulo exterior del patín al piso "sin alfombra" tiene que ser de:

$$
\mathrm{H}=135 \pm 2,5 \mathrm{~mm} .
$$

Pedalera que se monta en los vehículos AM con frenos de disco y doble circuito: 10/1976

A. $\mathbf{4 5 - 6 3 f}$

La altura del pedal medida desde el ángulo exterior del patín al piso "sin alfombra" tiene que ser de:

$$
H=140 \pm 5 \mathrm{~mm} .
$$

Pedalera que se monta en los vehículos AZ, AY, MEHARI, AZU y AK: 7/1973 \rightarrow 10/1976

La altura de pedal medida desde el ángulo exterior del patín al piso "sin alfombra" tiene que ser de:

$$
\mathrm{H}=130 \pm 5 \mathrm{~mm} .
$$

Pedalera que se monta en los vehiculos AZ 10/1976 $\longrightarrow 7 / 1981$, AY y MEHARI $10 / 1976 \longrightarrow 7 / 1977$, AZU y AK $10 / 1976 \longrightarrow 2 / 1978$

La altura entre el pedal y el piso tiene que ser de:

$$
H=143 \pm 4 \mathrm{~mm} .
$$

Pares de apriete:

- Depósito del líquido . 3,5 a 4,5 m.daN
- Tuerca de la varilla de empuje 1 a $2,5 \mathrm{~m} . \mathrm{daN}$
- Tornillo de fijación de la bomba
- ESTRIBO DELANTERO DE DISCOS

FRENO HIDRAULICO

FRENO MECANICO
(Freno de mano)

EL LIQUIDO ESPECIAL "LHM" DE COLOR VERDE, UTILIZADO EN EL CIRCUITO DE FRENOS DE ESTE VEHICULO ES UN LIQUIDO DE ORIGEN MINERAL, DE IGUAL NATURALEZA QUE EL ACEITE DE ENGRASE DEL MOTOR.

LA UTILIZACION DE CUALQUIER OTRO LIQUIDO PROVOCARIA EL DETERIORO COMPLETO DE LAS GOMAS Y DE LAS JUNTAS DE ESTANQUIDAD.

LOS ORGANOS APROPIADOS VAN PINTADOS O SEÑALADOS EN VERDE Y TIENEN QUE SUSTITUIRSE SOLAMENTE POR ORGANOS DE ORIGEN IGUALMENTE PINTADOS O MARCADOS DE VERDE. SOLO TIENEN QUE SER UTILIZADOS EN LOS VEHICULOS EQUIPADOS CON FRENOS DE DISCO.

LA LIMPIEZA PUEDE EFECTUARSE CON GASOLINA, EL SECADO CON AIRE COMPRIMIDO, NO UTILICE ALCOHOL.

FRENOS DELANTEROS DE DISCO

CARACTERISTICAS

Disco de frenos:

- Diámetro del disco	$\phi=244 \mathrm{~mm}$.
- Espesor de origen	7 mm .
- Espesor mínimo	4 mm .
- Alabeo máximo	0,2 mm.

Estribo:

- Diámetro del pistón $\phi=42 \mathrm{~mm}$.
- Posición del estribo con relación al disco:
- Plano de junta de los semi-estribos en el plano medio de la superficie del disco a . . 0,5 mm. (diferencia máxima)

Plaquetas:

- Superficie de una plaqueta del freno principal . 22 cm²
- Superficie de una plaqueta del freno de mano . 7 cm²
- Garantía entre plaquetas del freno de mano y el disco . 0,1 mm. de alabeo máximo del disco

Pares de apriete:

- Tornillos de fijación de los estribos	4,5 a $5 \mathrm{~m} . \mathrm{daN}$
- Tornillos de fijación de las excéntricas	$4 \mathrm{~m} . \mathrm{daN}$
- Tornillo de fijación del disco	4,5 a 5 m.daN
- Tuerca-racor hidráulico	0,8 a 0,9 m,daN
- Contratuerca de cable freno de mano	1,5 m.daN

TUBERIA DE ALIMENTACION DE LOS FRENOS TRASEROS

(Nuevo montaje)

- Garantía entre las espiras del tubo de alimentación y la traviesa	$\mathrm{g}=6 \mathrm{~mm}$. máximo
- Diámetro exterior de las canalizaciones de frenos	$\phi=3,5 \mathrm{~mm}$.
- Diámetro interior de los casquillos juntas	$\phi=3,5 \mathrm{~mm}$.
- Diámetro de los racores de canalización	$\phi=8 \mathrm{~mm}$. paso 1,25

Pares de apriete:

- Tuercas de fijación de las patillas del tubo de alimentación . 1 m.daN
- Tornillo de fijación del racor de tres vías . $2 \mathrm{~m} . \mathrm{daN}$
- Racores de las canalizaciones de frenos . 0,8 a 0,9 m.daN

LIMITADOR DE FRENADA

Vehículo ACADIANE (AY serie CD) 10/1979 \longrightarrow

Reglaje del limitador de frenada:

Este reglaje se debe efectuar después de cualquier intervención que modifique las alturas del vehículo.

Condiciones de reglaje:

- vehículo en vacío,
- depósito de gasolina lleno,
- carga de 70 kg . en el lugar del conductor, lo que representa una distancia $a=143,5 \mathrm{~mm}$. entre el eje de las ruedas y el de la traviesa del eje trasero.

Reglaje:

Pisar el pedal de frenos para obtener el cierre del limitador, y mantenerlo pisado. Aflojar las tuercas (1) y desplazar el conjunto limitador y soporte, para obtener una distancia $b=5$ a $5,5 \mathrm{~mm}$. entre la palanca de mando y el bucle del muelle de mando.
Puesta al dia N. ${ }^{\circ} 1$ al Manual 854-1 (Correctivo)
esquema del circuito de frenos

Frenos delanteros:

- Tambor: AZL, AX, AYA, AZU, AK, AMB, AMB 2, MEHARI \rightarrow 9/78, AYB \rightarrow 6/78, AXB \rightarrow 9/81.
- Discos: AYU, C-8 TT, AYB \longrightarrow 6/78, MEHARI $\longrightarrow 9 / 78,2$ CV6(AXB) $\longmapsto 9 / 81$.

CARACTERISTICAS

Bomba de frenos - Cilindros de rueda (bombines):

Bomba de frenos y bombines que equipan los vehículos AZ y AZU:

TIPO DE VEHICULO	Diámetro de la bomba de frenos (en mm.)	Diámetro de los bombines de frenos (en mm.)	
		Delanteros	Traseros
AZ \rightarrow 2/1970	22	25,5	19
AZ (2 CV 6) 7/1970 \rightarrow 6/1973	20,6	28,57	17,5
AZ (2 CV 6) 7/1973 \rightarrow 9/1978	19	28,57	17,5
AZU \longrightarrow 6/1970	22	28,57	19
AZ (2 CV 6) 9/1978 \rightarrow 9/1981*	20,6	28,57	17,5

Bomba de frenos y bombines que equipan los vehículos DYANE:

AY $\rightarrow 12 / 1972$	20,6	28,57	19
AYB $\rightarrow 5 / 1978$ MEHARI $\rightarrow 9 / 1978$	20,6	28,57	17,5

Bomba de frenos y bombines que equipan los vehículos AK:

AK $\rightarrow 5 / 1968$	22	28,57	19
AK $5 / 1968 \rightarrow 1 / 1973$	20,6	28,57	19
AK $1 / 1973 \rightarrow 4 / 1978$	19	28,57	17,5

Bomba de frenos y bombines que equipan los vehículos AM:

AMB $\rightarrow 4 / 1971$	20,6	28,57	19
AMB 2 (Dynam) $\rightarrow 6 / 1971$	20,6	28,57	19

Bomba de frenos, pistón de estribo y bombines que equipan los vehículos $A M, A Y$ y $A Z$ con frenos de disco delanteros: (líquido verde LHM):

TIPO DE VEHICULO	Diámetro (en mm.) de la bomba de freno	Diámetro de los pistones de los estribos delanteros	Diámetro de los bombines traseros
AM (C-8) Berlinas TT 3/1970 \rightarrow 7/1977	17,5	42	16
AM (C-8) Break TT 4/1971 \rightarrow 7/1977	17,5	42	17,5
AY CB (DYANE 6) $4 / 1978 \rightarrow *$ AY CA (MEHARI) $9 / 1978 \rightarrow{ }^{*}$ AY CD (Dyane 6/400) 2/1978 \rightarrow 10/1979* AY CD (Dyane 6/400) con limitador $10 / 1979 \longrightarrow$ *	20,6	42	$\begin{gathered} 17,5 \\ 19 \end{gathered}$
AZ KA (2 CV) 9/1981 \rightarrow	17,5	42	16

* Vehículos equipados de bomba de freno de doble circuito

FRENOS DELANTEROS DE DISCO

Pares de apriete:

- Tuercas de fijación de los platos de frenos

3,8 a 4,2 da Nm.

- Tuercas de fijación de los tambores del freno delantero $\phi=7 \mathrm{~mm}$.

2,5 da Nm.

- Tornillo de fijación de los tambores del freno delantero $\phi=9 \mathrm{~mm}$.
$4,5 \mathrm{da} \mathrm{Nm}$.
- Tuerca de fijación del rodamiento del árbol de diferencial

12 a 14 da Nm .

- Tuerca casquillo de fijación del rodamiento de apoyo:
- Montaje antiguo (tuerca casquillo en el apoyo)

10 a 12 da Nm .

- Montaje moderno (tuerca casquillo sobre el apoyo) 6 a 10 da Nm .
- Tuerca de buje trasero (cara de apoyo y rosca engrasadas) 35 a 40 da Nm .
- Tuerca tapón del rodamiento de buje trasero (cara de apoyo y rosca engrasadas) 35 a 40 da Nm .
- Racores de los tubos de alimentación del freno 0,6 a $0,8 \mathrm{da} \mathrm{Nm}$.

PEDALERA

Reglajes:

- Altura del pedal: $\mathrm{H}=130 \pm 5 \mathrm{~mm}$. (cota medida del ángulo exterior del patín, al piso "sin alfombra").

- Holgura de pedal

PEDALERA

Vehículos eyuipados con frenos de disco

Pistón 2 con apoyo en " a ".
Pistón 1 con apoyo en " b ".

$$
J=2 \text { mm. minimo. }
$$

La altura del pedal medida entre el ángulo exterior del patín, al piso "sin alfombra" debe ser de:

$$
\mathrm{H}=125 \pm 2,5 \mathrm{~mm} .
$$

Pares de apriete:

> - Depósito de líquido
> - Tuerca de la varilla de empuje
> 3,5 a 4,5 da Nm .
> - Tornillo de fijación de la bomba de frenos
> 1 a 2,5 da Nm.
> 1 da Nm.

ESTRIBOS DELANTEROS

FRENO HIDRAULICO

FRENO MECANICO
(Freno de mano)

FRENO HIDRAULICO

FRENO MECANICO
(Freno de mano)

EL LIQUIDO ESPECIAL "LHM" DE COLOR VERDE, UTILIZADO EN EL CIRCUITO DE FRENADO DE ESTE VEHICULO ES UN LIQUIDO DE ORIGEN MINERAL, DE LA MISMA NATURALEZA QUE EL ACEITE DE ENGRASE DEL MOTOR.

CUALQUIER OTRO LIQUIDO UTILIZADO EN SU LUGAR, OCASIONARA EL DETERIORO DE LAS GOMAS Y JUNTAS DE ESTANQUIDAD.

LOS ORGANOS APROPIADOS ESTAN PINTADOS DE COLOR VERDE Y DEBEN SER SUSTITUIDOS SOLA. MENTE POR OTROS ORGANOS IGUALMENTE PINTADOS EN COLOR VERDE. ESTOS DEBEN SER UTILIZADOS SOLAMENTE SOBRE LOS VEHICULOS EQUIPADOS DE FRENOS DE DISCO.

LA LIMPIEZA PUEDE REALIZARSE CON GASOLINA, EL SECADO CON AIRE COMPRIMIDO. NUNCA UTILIZAR ALCOHOL.

FRENOS DELANTEROS DE DISCO

CARACTERISTICAS

Disco de freno:

Estribo:

- Diámetro del pistón
$\phi=42 \mathrm{~mm}$.
- Posición del estribo respecto al disco:
- Plano de junta de los semi-cárteres en el punto medio de la cara del disco es: $0,5 \mathrm{~mm}$.

Plaquetas:

- Superficie de una plaqueta de freno principal . 22 cm²
- Superficie de una plaqueta de freno de seguridad . 7 cm²
- Garantía entre plaquetas de freno de seguridad y disco 0,1 mm. en el alabeo máximo del disco

REGLAJES

Pares de apriete:

To	4,5 a 5 da Nm.
- Tornillos de fijación de las excéntricas	4 da Nm .
- Tornillos de fijación del disco	4,5 a 5 da Nm .
- Tuerca-racor hidráulico	0,8 a 0,9 da Nm .
Contra-tuerca del cable de freno de seg	1,5 da Nm.

TUBERIA DE ALIMENTACION DE LOS FRENOS TRASEROS

(Nuevo montaje)

Garantía entre las espiras del tubo de alimentac	$\mathrm{g}=6 \mathrm{~mm}$. máximo
- Diámetro exterior de las canalizaciones de freno	$\phi=3,5 \mathrm{~mm}$.
- Diámetro interior de los guarnecidos de junta	$\phi=3,5 \mathrm{~mm}$.
- Diámetro de los racores de canalización	$\phi=8 \mathrm{~mm}$. paso 125

Pares de apriete:

LIMITADOR DE FRENADA

Vehículo ACADIANE (AY serie CD) 10/1979 \rightarrow

Reglaje del limitador de frenada:

Este reglaje se debe efectuar después de cualquier intervención que modifique las alturas del vehículo.

Condiciones de reglaje:

- vehículo en vacío,
- depósito de gasolina lleno,
- carga de 70 Kg . en el lugar del conductor, lo que representa una distancia $a=143,5 \mathrm{~mm}$. entre el eje de las ruedas y el de la traviesa del eje trasero.

Reglaje:

Pisar el pedal de frenos para obtener el cierre del limitador, y mantenerlo pisado. Aflojar las tuercas (1) y desplazar el conjunto limitador y soporte, para obtener una distancia $b=5$ a $5,5 \mathrm{~mm}$. entre la palanca de mando y el bucle del muelle de mando.

I. REGLAJE DE LAS EXCENTRICAS

3352

PL. 515

Reglaje de las excéntricas del freno delantero:

1. Levantar la parte delantera del vehiculo (soporte MR. 630-41/3 colocado sobre un gato de taller).
2. Actuar sobre las excéntricas de reglaje, en el sentido indicado por las flechas, al mismo tiempo girar el tambor con la mano, hasta que la zapata haga contacto con el tambor. Volver ligeramente hacia atrás para liberarlo. Volver a acercar la zapata hasta que el guarnecido de esta últiṃa, roce ligeramente.
Operar de la misma manera para la otra zapata.

OBSERVACION: No terminar nunca el reglaje, volviendo hacia atrás.

Las zapatas deben estar reguladas lo más cerca posible del tambor para que el recorrido del pedal de freno sea minimo.
3. Efectuar la misma operación sobre la otra rueda.
4. Bajar el vehiculo.

Reglaje de las excentricas del freno trasero:
5. Levantar la parte trasera del vehiculo (soporte MR. 630-41/3 colocado sobre un gato de taller).
6. Operar como està indicado en el párrafo 2 anterior. Actuar sobre las excéntricas en el sentido indicado por las flechas.
7. Efectuar la misma operación para la otra rueda.

II. PURGA DE LAS CANALIZACIONES

Liquidos hidráulicos:

Vehículos equipados de frenos de tambor en las cuatro ruedas: utilizar exclusivamente el líquido hidráulico correspondiente a la norma SAE J 1703.
Vehículos equipados de frenos de disco delanteros: utilizar exclusivamente el liquido hidráulico LHM de color verde.

4459

5521

1. Llenar el depósito de liquido.

NOTA: Si el vehiculo está equipado de una bomba de trenos de doble circuito, purgar el circuito de las ruedas delanteras primero.
2. Quitar el tapón protector del tornillo de purga del bombin trasero derecho.
Poner, sobre el tornillo de purga un tubo de plástico transparente (poner un recipiente para recuperar el líquido de frenos).
3. Purgar las canalizaciones.

Aflojar el tornillo de purga media vuelta aproximadamente.
Pisar varias veces sobre el pedal del freno.
Cuando éste esté pisado al máximo, apretar el tornillo de purga.
Soltar el pedal.
Recomenzar la operacion, hasta que no aparezcan burbujas de aire en el tubo transparente.
Vigilar el nivel del depósito y rellenarlo según necesidad. Apretar el tornillo de purga, cuando el pedal esté en presión.
4. Desmontar el tubo. Colocar en su sitio el tapón protector de goma.
5. Efectuar las mismas operaciones, para cada una de las ruedas en el siguiente orden:

- Rueda trasera derecha (1).
- Rueda trasera izquierda.
- Rueda delantera derecha (frenos de disco, un solo tornillo de purga sobre el patin delantero derecho). Solo C-8.
- Rueda delantera izquierda (frenos de disco, un solo tornillo de purga sobre el patin delantero izquierdo). Para DYANE 6, DYANE 6-400 con frenos de disco. - Rueda delantera izquierda.

6. Reestablecer el nivel del deposito.

III. CONTROL DE LA ESTANQUEIDAD DE LOS ORGANOS Y DEL CIRCUITO HIDRAULICO

Apretar sobre el pedal de freno, lo mas fuerte posible, durante 30 segundos.
Si el pedal resiste, la estanqueidad es buena. Si se baja mas o menos rapidamente es que existe una fuga.
Observar igualmente el nivel del deposito. Si el liquido es rechazado, la copela de la bomba es deficiente y es necesario proceder a la reparación de la bomba.

IV. CONTROL DEL ALABEO DEL DISCO DE UN FRENO DELANTERO

Utilizar el soporte del comparador MR. 630-52/34 provisto del comparador 2437-T, equipado de un palpador 2443-T.
a) Control del alabeo, estribo montado:

Fijar la plantilla soporte con ayuda del tornillo (4) de fijación del estribo delantero.
b) Control del alabeo, estribo desmontado:

Intercalar entre la plantilla y la caja de velocidades un tubo (A) (longitud $=110 \mathrm{~mm} .$, - interior $=10 \mathrm{~mm}$. mini.) para fijar los aparatos.

El alabeo asi medido no debe exceder de $0,2 \mathrm{~mm}$.

NOTA: Esta medida es la suma de los alabeos del disco y de la salida de la caja de velocidades. Si es superior a $0,2 \mathrm{~mm}$., es necesario, elegir en una de las seis posiciones posibles de acoplamiento del disco sobre la caja de velocidades, hasta que permita obtener esta condicion.

Si el resultado no puede ser obtenido, cambiar el disco o el àrbol de salida de la caja de velocidades y verificar de nuevo.

This Page Is Intentionally Blank

I. REGLAJE DE LA HOLGURA DE UN PEDAL DE FRENO

1. Verificar la altura del pedal:

Con el pedal haciendo tope en "a», la altura del pedal debe ser de:
$H=130 \pm 5 \mathrm{~mm}$. (cota medida del àngulo superior del patin, al piso, sin alfombra).
En caso contrario, doblar la chapa del soporte en "a" para obtener esta cota.
2. Regular la holgura del pedal:

Aflojar la contratuerca (2). Roscar o desenroscar el empujador (1) para obtener una holgura "j") $=0,5$ a 1 mm . entre el empujador y el piston de la bomba, lo que proporciona una holgura en el pedal: "G $1 »=\mathbf{5} \mathbf{~ m m}$.
3. Regular el contactor de stop:
a) Asegurarse del buen reglaje del pedal de freno en reposo (ver párrafos 1 y 2 anteriores).
b) Apretar, con la mano, sobre el pedal de freno. Las lamparas de stop deben encenderse en cuanto el pistón de la bomba se desplaza.

Doblar (si es necesario), la chapa soporte del contactor, para realizar esta condición.

Regular la holgura del pedal:

(pedalera antigua).

Aflojar la tuerca (2) de blocaje del empujador.
Roscar y desenroscar el empujador para obtener una holgura de 0,5 a 1 mm . entre el empujador y el pistón de la bomba.

Regular el contactor de stop:

Para un recorrido del pedal de $1,5 \mathrm{~mm}$., las lamparas de stop no deben encenderse.

Para un recorrido del pedal de 10 mm . como máximo, las lámparas de stop deben encenderse.

En caso contrario, desplazar la posición de la brida (1) sobre el pedal, para realizar estas condiciones.

REGLAJE DEL FRENO DE MANO

PL. 478
OBSERVACION: EI freno de mano actúa únicamente sobre los tambores delanteros.

1. Levantar el vehículo por la parte delantera (soporte MR. 630-41/3 situado sobre un gato con ruedas).

PL. 518

2. Regular sucesivamente la tensión de los dos cables de frenos, por las tuercas (1), de manera que el tirador de frenos quede en la $3 .^{a}$ muesca, cuando las ruedas empiecen a bloquearse, y que en la 5 . a muesca éstas queden bloqueadas.

REGLAJE DEL FRENO DE MANO

El freno de mano acciona las cuatro plaquetas accionando sobre los discos de frenos delanteros. Es independiente del freno principal.

1. Levantar la parte delantera del vehículo y calzarlo. Empujar a fondo el tirador de mando del freno de mano.

2. Regular las excéntricas:

a) Desmontar los conductos flexibles de calefacción. Aflojar los tornillos de fijación (4) de las excéntricas (5).
Aflojar las contratuercas (2) y las tuercas (1) de reglaje.
b) Vehículos \rightarrow 6/1971:

Poner las excéntricas en la posición indicada por la foto (las ranuras " c " hacia lo alto).
Vehículos 6/1971 \longrightarrow :
Situar las excéntricas en la posición que da el juego máximo (llave 2115-T).
Asegurarse de que las palancas (3) hacen tope en "a" y "b".
c) Actuar sobre la excéntrica (5) en el sentido de las flechas de manera que se obtenga un reglaje en el límite del rozamiento con el punto de alabeo máximo del di:co de frenos.
d) Apretar los tornillos de fijación (4) a 4 m .daN, asegurándose de que las excéntricas no giren durante el apriete.
3. Regular el cable del freno de mano:
a) Asegurarse de que los extremos (7) de funda y las fundas (6) están colocadas.
b) Actuar sucesivamente sobre las tuercas (1), derecha e izquierda, de forma que cuando se coloque el tirador en la tercera muesca, los frenos empiecen a actuar, y al llegar a la quinta muesca queden bloqueados.

NOTA:
Las longitudes " d " de las roscas de los cables deben de tener 5 mm . por cada lado (igual longitud a la izquierda que a la derecha).
Apretar las contratuercas (2) a 1,5 m.daN.
4. Controlar el freno de mano:

Comprobar que el freno no se afloja en la posición de frenado y bloqueado.
Comprobar que después de varias maniobras el reglaje del tirador no varía.

CARACTERISTICAS

I. DINAMOS Y REGULADORES

Equipo 6 voltios:

Marca	Vehículos tipo AZ y AY		Vehículos tipo AM y AK	
	Dínamo	Regulador	Dínamo	Regulador
DUCELLIER	7276 G	8325 A	7301 G	8308 A
PARIS-RHONE	G 11 R 111	XT 212	G 10 C 26	XD 213

Equipo 12 voltios:

-j	Marca	Dínamo
Regulador		
DUCELLIER	7302 G	8243 F
	PARIS-RHONE	G 10 C 51

Rectificación del colector:

Tipo de dínamo	7276 G	G 11 R 111	7301 G	G 10 C 26	7302 G	G 10 C 51
ϕ mínimo del colector después de la rectificación	$52,5 \mathrm{~mm}$.	51 mm.	35 mm.	$35,5 \mathrm{~mm}$.	35 mm.	35 mm.

Prueba en el banco o sobre el vehículo, de las dínamos:
(Dínamo sin regulador: borna "DYN" unida a la borna "EXC" y cuerpo de dínamo a masa).

Tipo de dínamo	7276 G	G 11 R 111	7301 G - G 10 C 26	7302 G	G 10 C 51
Velocidad de cebado en frío bajo $6,5 \mathrm{~V}$	1.350 r.p.m.	1.200 r.p.m.	950 r.p.m.		
Caudal en frío bajo 6,5 V.	$\begin{aligned} & 12 \mathrm{~A} \text { a } 1.800 \text { r.p.m. } \\ & 21 \mathrm{~A} \text { a } 2.200 \text { r.p.m. } \end{aligned}$	13 A a 1.600 r.p.m. 25 A a 2.200 r.p.m.	8 A a 1.500 r.p.m. 22 A a 2.000 r.p.m.		
Velocidad de cebado en frío bajo 13 V .				1.520 r.p.m.	1.700 r.p.m.
Caudal en frío bajo 13 V .				$\begin{aligned} & 12 \mathrm{~A} \text { a } 2.000 \text { r.p.m. } \\ & 25 \mathrm{~A} \text { a } 3.000 \text { r.p.m. } \end{aligned}$	$\begin{aligned} & 19 \text { A a } 2.200 \text { r.p.m. } \\ & 33 \text { A a } 3.000 \text { r.p.m. } \end{aligned}$

CONTROLES EN EL BANCO DE LOS REGULADORES

A - Regulador 8325 A:

Tensión de conjunción: 6 a 6,5 voltios (en frio).
Tensión de disyunción: inferior, en un voltio al menos, a la tensión de conjunción.
Corriente de retorno: 5 amperios bajo 6 voltios (en frio).
REGULACION: (Dinamo girando a 3.500 r. p. m.):
a) Elemento limitador de intensidad:

Regular la tensión a 6,6 voltios, la intensidad debe ser de 23 a 25 amperios.
b) Elemento regulador de tensión:

Regular la intensidad a 4 amperios, la tensión debe ser de 7,1 a 7,5 voltios.
Regular la intensidad a 18 amperios, la tensión debe ser de 6,9 a 7,3 voltios.

B - Regulador XT 212:

Tensión de conjunción: 6 a 6,5 voltios (en frio).
Tensión de disyunción: inferior, en un voltio al menos, a la tensión de conjunción. Corriente de retorno: 3 a 7 amperios bajo 6 voltios (en frio).
REGULACION: (Dinamo girando a 3.500 r. p. m.):
a) Elemento limitador de intensidad:

Regular la intensidad a 6,6 voltios, la intensidad tiene que ser de 23 a 25 amperios.
b) Elemento regulador de tension:

Regular la intensidad a 5 amperios, la tensión tiene que ser de 7,3 a 7,7 voltios.
Regular la intensidad a 18 amperios, la tensión tiene que ser de 7,1 a 7,5 voltios.

C - Regulador 8308 A y XD 213:
Tensión de conjunción: 6 a 6,5 voltios.
Tensión de disyunción: inferior, en un voltio al menos, a la tensión de conjunción. REGULACION: (Dinamo girando a 3.500 r. p. m.):
a) Elemento limitador de intensidad:

Regular la tensión a 6,5 voltios, la intensidad debe ser de 25 a 32 amperios.
b) Elemento regulador de tension:

Regular la intensidad a 5 amperios, la tensión tiene que ser de 7,5 a 8,3 voltios.
Regular la intensidad a 25 amperios, la tension tiene que ser de 6,6 a 7,2 voltios.

D - Regulador 8343 F y YT 2116:

Tensión de conjunción: 12 a 13,6 voltios.
Tensión de disyunción: inferior, en un voltio al menos, a la tensión de conjunción.
Corriente de retorno: 5 amperios máximo bajo 13 voltios.
REGULACION: (Dínamo girando a 3.500 r. p. m.):

Regulador 8343 F:

a) Elemento limitador de intensidad:

Regular la tension a 13,2 voltios, la intensidad tiene que ser de 20 a 22 amperios.
b) Elemento regulador de tensión:

Regular la intensidad a 2 amperios, la tension tiene que ser de 14 a 14,4 voltios.
Regular la intensidad a 17 amperios, la tension tiene que ser de 13,5 a 14,4 voltios.

Regulador YT 2116:

Regular la tensión a 12,5 voltios, la intensidad tiene que ser de 30 a 33 amperios. Regular la tensión a 13,5 voltios, la intensidad tiene que ser de 18 a 33 amperios. Regular la tensión a 14 voltios, la intensidad tiene que ser de 5 a 28 amperios.

II. ALTERNADORES Y REGULADORES (12 voltios)

IMPORTANTE:

- No hacer girar nunca el alternador sin que esté conectado a la batería.
- No conectar el alternador sobre una bateria de polaridad invertida.
- No verificar el funcionamiento del alternador haciendo un corto circuito entre el borne "+» y masa o entre el borne "EXC» y masa
- No cargar la bateria ni efectuar soldadura eléctrica sobre el chasis, \sin haber antes desconectado los dos cables, positivo y negativo $y \sin$ haber aislado el cable positivo de la masa.

A. Alternador DUCELLIER 7522 B:

En los vehículos $A K(3 / 1966 \rightarrow 5 / 1968)$ y en los vehiculos $A M$ "AM/ 6" (7/1966 \rightarrow 5/1968).
Alternador DUCELLIER 7542-A (idéntico al precedente, excepto los terminales de salidas alternativas para el mando de relé transistorizado del testigo de carga).
En vehiculos AYA 3 "DYANE 6") (1/1968 \rightarrow 9/1968).
En vehiculos AYM "MEHARI» (8/1968 \rightarrow 7/1969).
Potencia nominal: 260 watios.
Intensidad nominal bajo 13 voltios: 20 amperios a 5.000 r. p. m. alternador.
Resistencia del rotor: 7,4 ! .
Velocidad de conjunción: 1.500 r. p. m. alternador.
Relación de velocidad de rotación alternador/motor $=2,1 / 1$.

Alternador DUCELLIER 7542 G:

En vehículos AYA 3 "Dyane 6" equipados con una calefacción FR-20.
Potencia normal: 320 watios.
Intensidad nominal bajo 13 voltios: 25 amperios a $6.000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. alternador.
Regulador DUCELLIER 8347 B (del tipo "J" de una etapa) para alternadores antes reseñados.
B. Alternador DUCELLIER 7534 A :

Alternador PARIS-RHONE A 11 M 4.

Sobre vehiculos

$$
\left\{\begin{array}{l}
A Y \text { CA "MEHAR/» (7/1969 } \rightarrow \text { 9/1973) } \\
A K(5 / 1968 \rightarrow 2 / 1970) \\
A Y \text { "DYANE } 4 \text {) }(3 / 1968 \rightarrow 2 / 19) \\
\text { AYB "DYANE 6" }(9 / 1968 \rightarrow 2 / 1970)
\end{array}\right.
$$

Alternador PARIS-RHONE A 11 M 11.
En los vehiculos: AY CA "MEHARı» (9/1973 \longrightarrow 9/1974).

Alternador FEMSA ALN $12-1$ en vehiculos A T.T. (2/1975 \rightarrow)
Potencia : 400 watios
Tensión : 14 voltios
Intensidad nominal : 28 amperios a 8.000 r. p. m. alternador
Resistencia del rotor : 7 !?
Velocidad de conjunción : $1.450 \mathrm{r} . \mathrm{p} . \mathrm{m}$. alternador
Relación de velocidad de rotación alternador/motor $=1,8 / 1$.
Regulador DUCELLIER 8347 C Validos para los siete alternadores precedentes

C. Relé transistorizado DUCELLIER 8363:

En los vehiculos equipados con alternadores provistos de terminales de salidas alternativas: alternador $7542 \mathrm{~A}-7542 \mathrm{G}-7534 \mathrm{~A}$ A 11 M 4 - A 11 M 11 .
Este relé acciona la extinción del testigo de carga, cuando el alternador carga normalmente.

control del caudal de un alternador

Efectuar la conexión como se indica en el croquis, sirviéndose de un voltimetro \mathbf{V}, de un amperimetro \mathbf{A} y de un reostato, o mejor, si es posible, de un aparato "voltimetro-amperimétro-reostato", de venta en el comercio y mencionado en las Notas de Utillaje y Equipos (color verde).

Control del caudal de carga: (bateria bien cargada).
a) Alternadores 7522 B y 7542 A :

Medir la carga, aumentando progresivamente el régimen del alternador y actuando sobre el reostato para mantener la tension a 13 voltios.
Caudal de carga: 5 amperios a 900 r. p. m. motor (1.900 r. p. m. alternador) bajo 13 voltios,
17 amperios a 1.800 r. p. m. motor (3.800 r. p. m. alternador) bajo 13 voltios,
20 amperios a 2.400 r. p. m. motor (5.000 r. p. m. alternador) bajo 13 voltios.
b) Alternador 7542 G :

Caudal de carga: 7,5 amperios a 1.300 r. p. m. motor (2.700 r. p. m. alternador) bajo 13 voltios, 24 amperios a 2.900 r. p. m. motor (6.000 r. p. m. alternador) bajo 13 voltios.
c) Alternadores $7534 \mathrm{~A}-7532 \mathrm{~A}$ - A 11 M 4 - A 11 M 6 - A 11 M 11 - A 11 M 12 - ALN 12-1:

Medir el caudal de carga, haciendo aumentar el régimen y actuando sobre el reostato para mantener la tension a 14 voltios
Caudal de carga: 6 amperios a 1.050 r. p. m. motor (1.900 r. p. m. alternador) bajo 14 voltios,
22 amperios a 2.350 r. p. m. motor (4.200 r. p. m. alternador) bajo 14 voltios,
28 amperios a 4.450 r. p. m. motor (8.000 r. p. m. alternador) bajo 14 voltios.

CONTROL DE UN REGULADOR DE TENSION 8347 o AYA 213

Efectuar la conexión indicada en el croquis, sirviéndose de un amperimetro \mathbf{A}, de un voltimetro \mathbf{V} y de un reostato, o mejor, si es posible, de un aparato "voltimetro-amperimetro-reostato" de venta en el comercio y mencionado en las Notas de Utillaje y Equipos (color verde)

Acelerar el motor para obtener 5.000 r. p. m. del alternador, es decir:

- 2.400 r. p. m. motor para los vehiculos equipados con alternadores: 7522 B - 7542 A - 7542 G,
- 2.800 r. p. m. motor para los vehículos equipados con alternadores: 7534 A - 7532 A - A 11 M 4-A 11 M 6.

$$
\text { A } 11 \text { M } 11 \text { - A } 11 \text { M } 12 \text { - ALN 12-1. }
$$

Actuar sobre el reostato para obtener un caudal de 15 amperios.

Interrumpir el caudal de carga, cortando el contacto durante un tiempo muy corto para desimantar el regulador.

Esperar a que el motor haya recuperado su régimen y entonces deberà leerse en el voltimetro una tension comprendida:

- entre 14 y 14,6 voltios, a $20^{\circ} \mathrm{C}(\longrightarrow 11 / 1975)$,
- entre 13,6 y 14,2 voltios, a $22^{\circ} \mathrm{C}(11 / 1975 \longrightarrow)$.

NOTA: Estas cifras varian con la temperatura. La tension varia inversamente a la temperatura 0,2 voltios aproximadamente cada $10^{\circ} \mathrm{C}$.

Si la tensión observada no está dentro de las tolerancias, el regulador es defectuoso.

III. MOTORES DE ARRANQUE

Motores de arranque 6 voltios: (mando mecánico).

Marca y tipo	ϕ mínimo colector después de rectificación	Intensidad absorbida		Vehículo que afecta
		En vacío	Bajo esfuerzo	
DUCELLIER 6112 A	$31,5 \mathrm{~mm}$.	30-35 A	70 a 90 A	AM $(\rightarrow$ $7 / 1966)$ AZ $(\rightarrow$ $2 / 1970)$ AK $(\rightarrow$ $2 / 1966)$ AY \rightarrow $3 / 1968)$ AZU \rightarrow $7 / 1972)$
PARIS-RHONE D 8 L 38	$34,5 \mathrm{~mm}$.	30 a 35 A	70 a 90 A	
ISKRA-KRANJ ZC 4	32 mm .	30 a 35 A	70 a 90 A	
DUCELLIER 6188 A	$31,5 \mathrm{~mm}$.	30 a 35 A	70 a 90 A	
PARIS-RHONE D 8 L 79	$34,5 \mathrm{~mm}$.	30 a 35 A	70 a 90 A	(3/1968 \rightarrow

Motores de arranque 12 voltios: (mando mecánico).

Marca y tipo	ϕ mínimo colector después de rectificación	Intensidad absorbida		Vehículos que afecta
		En vacío	Bajo esfuerzo	
DUCELLIER 6134	$31,5 \mathrm{~mm}$.	25-30 A	45 a 60 A	AY (12 voltios) $(\rightarrow 2 / 1970)$AK (2/1966 $\rightarrow 7 / 1973)$AYA 3"DYANE 6"AM (7/1966 \rightarrow 5/1968) DUCAM (7/1966 \rightarrow 3/1969) P.R.
PARIS-RHONE D 8 L 67	$34,5 \mathrm{~mm}$.	25 a 30 A	45 a 60 A	
DUCELLIER 6174	30,5 mm.	25 a 30 A	45 a 60 A	AZ (12 voltios) / $\longrightarrow 2 / 1970$) AYA 2 (12 voltios) $(3 / 1968 \longrightarrow 2 / 1970$) AYB (\rightarrow 9/1969) AY CA "MEHARI" (\rightarrow 12/1971)
PARIS-RHONE D 8 L 80	$34,5 \mathrm{~mm}$.	25 a 30 A	45 a 60 A	
DUCELLIER 6195 A	32 mm .	25 a 30 A	45 a 60 A	AM (5/1968 \rightarrow 3/1969)

Reglaje del bendix

6 voltios		12 voltios	
DUCELLIER	PARIS-RHONE	DUCELLIER	PARIS-RHONE
6112	D 8 L 38		
6188	D 8 L 79	6134 6174 6195 A	D 8 L 67
		$A=21 \mathrm{~mm}$.	$A=19,7 \mathrm{~mm}$.
$A=19,7 \mathrm{~mm}$.	$B=21 \mathrm{~mm}$.		
$B=31,7 \mathrm{~mm}$.	$B=31,7 \mathrm{~mm}$.	$B=31,7 \mathrm{~mm}$.	$B=31,7 \mathrm{~mm}$.

Reglaje de un contactor de motor de arranque 6134 D y D 8 L 67:

1. Aplicar una tensión de 12 voltios entre la borna de alimentación (1) y la carcasa intercalando una lámpara testigo en serie.
2. Maniobrar la palanca (5) hasta que la lámpara se en. cienda. En ese preciso momento la superficie delantera del piñón de mando (6) debe encontrarse a una distancia $d=1 \pm 0,2 \mathrm{~mm}$. de la arandela de tope (7).
NOTA: Esta arandela de tope (7) se monta en este tipo de motores de arranque desde Enero 1967.
3. Si no se realiza esta condición, regular el recorrido del empujador (2), roscando o desenroscando el tope (4) de apoyo de la palanca (5).
Comprimir el muelle (3) para liberar la ranura (4), de la palanca (5).

OPERACION N. ${ }^{\circ}$ A. 530-0: Características y controles de los órganos eléctricos
Op. A. 530-0

Motores de arranque 12 voltios con solenoide:

Marca y tipo	ϕ mínimo colector después rectificación	Intensidad absorbida		Vehículo que afecta
		En vacío	Bajo esfuerzo	
DUCELLIER 6202 A ○ B	31 mm .	30 a 40 A	150 A	AZ-AYA 2 $(2 / 1970$ \rightarrow AZU $(7 / 1972$ \rightarrow AYB (9/1969 $(2 / 1970)$ AY - CB $(2 / 1970$ \rightarrow AY - CA $(12 / 1971$ \rightarrow AK $(7 / 1973$ \rightarrow AM 3 $(3 / 1969$ \rightarrow
PARIS-RHONE D 8 E 99 ó D8E $116(6 / 1972 \rightarrow$)	$34,5 \mathrm{~mm}$.	30 a 40 A	150 A	
ISKRA ZB 4 (11/1971 \rightarrow)	31 mm .	30 a 40 A	150 A	
FEMSA MTA 12-30 (7/1973 \longrightarrow)		30 a 40 A	150 A	
DUCELLIER 6202-C	Colector plano	30 a 40 A	150 A	A T.T. (12/1974 \rightarrow)

CONTROL DE UN MOTOR DE ARRANQUE DUCELLIER 6202 O ISKRA ZB 4

1. Prueba sobre vehículo:

2. Prueba en el banco:
a) Par medio a 1.000 r.p.m.
$0,4 \mathrm{daNm}$.
Intensidad absorbida por este par 215 amperios
b) Potencia mecánica máxima

589 watios
Par correspondiente a la potencia máxima . 0,25 da Nm.
Intensidad absorbida por este par . 150 amperios

REGLAJE DEL PIÑON DE MANDO DE UN MOTOR DE ARRANQUE DUCELLIER 6202 O ISKRA ZB 4

1. Desconectar el cable de masa, de la borna negativa de la batería.
2. Desmontar el motor de arranque.
3. Desmontar el tapón plástico (5) del solenoide (4).
4. Desconectar el cable (1) de alimentación de los inductores de la borna (2) (referencia "DEM") del solenoide.
5. Excitar el solenoide (4). Para ello conectar:
a) la borna positiva de una batería a la borna (3) de alimentación del solenoide.
b) la borna negativa de la batería, a la borna (2) (referencia "DEM") del solenoide.

Estando el piñón de mando (1) avanzado, medir la cota. "a" comprendida entre el extremo del piñón de mando (1) y el tope (2).

Esta cota "a") debe ser de 1 mm .; de lo contrario hay que obtenerla actuando sobre el tornillo de reglaje (3)
6. Desconectar la bateria de las bornas (6) de alimentacion del solenoide y (5) de alimentación de los inductores.

El piñon de mando (1) retrocede para ocupar su posición de reposo. Medir la cota "b" comprendida entre la superficie de apoyo de la brida del motor de arranque sobre el cárter de embrague y el extremo del piñón de mando (1).

Esta cota "b" debe ser de 21 mm . como máximo, si no, revisar el motor de arranque.
7. Conectar el cable (4) de alimentación de los inductores, a la borna (5) (referencia "DEM») del solenoide (7).
8. Montar el tapón plástico (8).
9. Montar el motor de arranque en el vehiculo.
10. Conectar el cable de masa a la borna negativa de la bateria.

CONTROL DE UN MOTOR DE ARRANQUE

PARIS-RHONE D 8 E 99 ó (D 8 E 116 Junio $1972 \rightarrow$)

1. Prueba sobre el vehículo:

a) Comprobar que la batería está correctamente cargada y medir:

- Intensidad absorbida, piñón bloqueado \qquad

D8E99	D8E116
330 a 340 A	360 A
30 a 40 A	30 a 40 A
0,6 da Nm.	$0,5 \mathrm{da} \mathrm{Nm}$.
220 A	220 A
736 W	662 W
$0,38 \mathrm{da} \mathrm{Nm}$.	$0,35 \mathrm{da} \mathrm{Nm}$.
180 A	175 A

REGLAJE DEL PIÑON DE MANDO DE UN MOTOR DE ARRANQUE

1. Desconectar el cable de masa, de la borna negativa de la batería.
2. Desmontar el motor de arranque.
3. Desconectar el cable (4) de alimentación de los inductores, de la borna (5) del solenoide.
4. Excitar el solenoide. Para ello, conectar:
a) la borna positiva de una batería a la borna (1) de alimentación del solenoide.
b) la borna negativa de la batería a la borna (3) del solenoide.

Estando el piñón de mando (1) avanzado, medir la cota "a" comprendida entre el extremo del piñon de mando (1) y el tope (2).

Esta cota "a»" debe ser de 1 mm . De lo contrario, para obtenerla:

- Desacoplar el solenoide del motor de arranque.
- Comprimir la copela del muelle (según "b") y mantener la horquilla (3). Roscar o desenroscar esta horquilla sobre el eje del solenoide para obtener la cota "a».
Si «a" > 1 mm .: roscar la horquilla.
Si «a»< 1 mm .: desenroscar la horquilla.
(Actuar por fracción de vuelta).
Acoplar el solenoide, al motor de arranque.

5. Desconectar la bateria de las bornas (5) y (6) del solenoide.
El piñon de mando (1) retrocede para ocupar su posicion de reposo. Medir la cota "C", comprendida entre la superficie de apoyo de la brida del motor de arranque sobre el carter de embrague y el extremo del piñon de mando (1):
Esta cota "c") debe ser de 21 mm . máximo (motor de arranque D 8 E99) ó $21,6 \mathrm{~mm}$. (motor de arranque D 8 E 116). Si no, revisar el motor de arranque.
6. Conectar el cable (8) de alimentacion de los inductores a la borna (7), .del solenoide (4).
7. Montar el motor de arranque sobre el vehiculo.
8. Conectar el cable de masa, a la borna negativa de la bateria.

IV. EQUIPO 24 voltios
 (Especial MEHARI - tipo EJERCITO)

Este vehiculo difiere esencialmente del vehiculo de serie, por una instalación de 24 voltios prevista para un equipo especial de radio (combinado emisor-receptor).

BATERIAS:

Dos baterias de 12 voltios montadas en serie:
Marca: STECO, 12 voltios 43 Ah (200/40 Ah).
Tipo: 2 HN ejército.
Referencia: 6140-14-238-9715.
Esta prevista una borna ARELCO sobre la borna positiva para la fijación de los cables de alimentación del motor de arranque y de la caja de conexiones.
Referencia ARELCO: P 1 M 64.
Apriete de la tuerca superior: 0,35 da Nm .
Un cortacorriente DUCELLIER tipo Ro 80 A 1, referencia 1034 A està colocado sobre el tablero.
OBSERVACION: Una batería está situada en el lugar de la del vehículo de serie. La otra, contra el tablero de abordo, lado acompañante del conductor, lo cual obliga al montaje de las siguientes piezas:

- un soporte de tablero de abordo,
- un tablero de abordo modificado (guantera desmontable),
- una placa de registro de la batería,
- un soporte para la fijación y la tapa de esta nueva bateria.

ALTERNADOR:

Alternador monofásico PARIS-RHONE 24 voltios 20 A referencia A $11 \mathrm{M} 9(\rightarrow 3 / 1974)$ o A $11 \mathrm{M} 13(3 / 1974 \longrightarrow)$.
Potencia máxima a partir de 8.000 r. p. m.: 580 watios.
Resistencia de los inductores: $21 \pm 5 \%!$.
Escobillas: longitud minima después del desgaste: 13 mm .
Fuerza de los muelles sobre escobillas nuevas: $2,85 \pm 10 \%$ newtons.
Relación de velocidad de rotación alternador/motor $=1,8 / 1$.
CONTROL DEL ALTERNADOR (con baterias bien cargadas).

Realizar la conexión según el croquis, utilizando un voltimetro \mathbf{V}, un amperimetro \mathbf{A} y un reostato. Medir el caudal del alternador haciendo aumentar progresivamente el régimen motor y actuando sobre el reostato para mantener la tensión igual a 28 voltios.

Velocidad de cebado : 1.030 r. p. m. (1.850 r. p. m. alternador) bajo 28 voltios.
Caudal del alternador: $7,5 \mathrm{Amp}$. a 1.670 r. p. m. motor ($3.000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. alternador) bajo 28 voltios.
15,5 Amp. a 2.830 r. p. m. motor (5.100 r . p. m. alternador) bajo 28 voltios.
18,5 Amp. a 4.440 r. p. m. motor (8.000 r. p. m. alternador) bajo 28 voltios.

REGULADOR DE TENSION.

Regulador de tensión electrónico PARIS-RHONE 24 voltios. tipo L 21, referencia ZL 210.

OBSERVACIONES IMPORTANTES:

Es necesario absolutamente evitar ciertas falsas maniobras que provocan la destrucción del regulador de tensión.
a) Comprobar que el cable de masa está conectado sobre el puente de masa (tornillo de fijación) del regulador.
b) Evitar la puesta a masa del circuito de excitación.
c) No cambiar los cables conectados sobre las bornas $\omega^{m+\infty}$ y "EXC» del regulador.
d) No parar el motor abriendo el cortacorriente.

La apertura del cortacorriente debe efectuarse con el motor parado.

Control del regulador de tensión:

Realizar la conexión (croquis inferior), con un amperímetro \mathbf{A}, con un voltimetro \mathbf{V} y con un reostato. Acelerar el motor hasta obtener un régimen de $3.300 \mathrm{r} . \mathrm{p} . \mathrm{m}$. (es decir, 6.000 r . p. m. alternador).
Actuar sobre el reostato para aumentar la corriente de carga del alternador sin volver el mando hacia atrás y leer la tension correspondiente.

Efectuar varias mediciones y llevarlas sobre el gráfico de la figura superior. Estas deberán estar comprendidas dentro de la parte sombreada, de lo contrario, el regulador es defectuoso.

NOTA: El gráfico (figura superior) corresponde a medidas comprobadas a la temperatura de $20^{\circ} \mathrm{C}$.
Si la temperatura ambiente "t"' es diferente, es necesario modificar los valores indicados sobre el gráfico. La tensión varia inversamente a la temperatura «t", La corrección de tensión que debe aportarse viene determinada por la fórmula:
$U($ voltios $)=\frac{20^{\circ}-t}{t}$

MOTOR DE ARRANQUE

Motor de arranque con mando positivo electromagnético PARIS-RHONE 24 voltios, referencia D 8 E 110.	
Escobillas: longitud mínima después del desgaste	7 mm
Inductor: resistencia	0,034 Ω
Inducido: ϕ mínimo del colector después de la rectificación	$35,5 \mathrm{~mm}$.
juego lateral.	0,5 a 1 mm .

Bendix (reglaje):

Estando desmontado el motor de arranque, desconectar del solenoide, el cable de alimentación de los inductores. Excitar el solenoide y medir el juego comprendido entre la arandela de tope y el extremo del piñón de engranaje. Debe ser de 0,5 a $1,5 \mathrm{~mm}$., de lo contrario actuar sobre el tornillo de reglaje del solenoide.

Solenoide:

CONTROL DEL MOTOR DE ARRANQUE

1. ${ }^{\text {a }}$) Prueba sobre el vehículo:

Comprobar que las baterías están correctamente cargadas y medir:

- la intensidad absorbida, piñón bloqueado

300 amperios

- la intensidad absorbida, en pleno esfuerzo

150 amperios aprox., a $20^{\circ} \mathrm{C}$

- la intensidad absorbida en vacío, motor de arranque desmontado inferior a 50 amperios

2. ${ }^{\text {a }}$) Prueba en el banco:

a) Par mínimo a 1.000 r.p.m.	0,55 da Nm.
Intensidad absorbida por este par	220 amperios
b) Potencia mínima bajo 20,2 voltios	1.000 watios
Par correspondiente	0,35 da Nm.
Intensidad absorbida por este par	180 amperios

ENCENDIDO

DISTRIBUIDOR

Blindado DUCELLIER 24 voltios, referencia 4407 A.
Curva de avance centrífugo y reglaje del ruptor, idénticos a los de vehículos de serie.
Este distribuidor obliga a la modificación del colector de aire (orificio de paso del cable blindado de alimentación del distribuidor, más grueso y supresión del recorte).

BOBINA DE ENCENDIDO

Blindada A.B.G. 24 voltios, referencia 177267.
Dos cables de alta tensión, blindados:

- cable izquierdo A.B.G., referencia 177264
- cable derecho A.B.G., referencia 177263

Apriete de los racores de los cables blindados sobre bobina y bujías 0,6 a 0,8 da Nm.
Filtro sobre circuito de alimentación (primario) de la bobina A.B.G., referencia 177265.

BUJIAS DE ENCENDIDO

This Page Is Intentionally Blank Op. A. $530-0$ a 1

CARACTERISTICAS

DINAMOS Y REGULADORES

Marca	Dínamo	Regulador
DUCELLIER	7276 G	8325 A
PARIS-RHONE	G 11 R 111	XT 212

RECTIFICACION:

Marca de dínamo	DUCELLIER	PARIS-RHONE
Tipo de dínamo	7276 G	G 11 R 111
ϕ mínimo del colector después de rectificación	$52,5 \mathrm{~mm}$.	51 mm.

PRUEBA EN EL BANCO O SOBRE EL VEHICULO DE LAS DINAMOS:

Manual 854-1
Dínamo sin regulador: borne "DYN" conectado al borne "EXC" y cuerpo de dínamo, o cable negro, a masa.

Marca y tipo de dínamo	DUCELLIER 7276 G	PARIS-RHONE G 11 R 111
Velocidad de cebado en frío bajo $6,5 \mathrm{~V}$	1.350 r.p.m.	1.200 r.p.m.
Caudal en frío bajo 6,5 voltios	12 A a 1.800 r.p.m. $21 \mathrm{~A} \mathrm{a} \mathrm{2.200} \mathrm{r.p.m}$.	13 A a 1.600 r.p.m. 25 A a 2.200 r.p.m.

PRUEBA EN EL BANCO DE LOS REGULADORES - REGLAJES

Reguladores DUCELLIER 8325 A y PARIS-RHONE XT 212

Tensión de conjunción: 6 a 6,5 voltios (en frío).
Tensión de disyunción: inferior a 1 voltio como mínimo a la tensión de conjunción.
Corriente de retorno: 3 a 7 amperios bajo 6 voltios (en frío).
REGULACION: (en frío) Dínamo girando a 3.500 r.p.m.

Regulador 8325 A :

a) Elemento limitador de intensidad.

Regular la tensión a 6,6 voltios, la intensidad debe ser de 23 a 25 amperios.
b) Elemento regulador de tensión:

Regular la intensidad a 4 amperios, la tensión debe ser de 7,1 a 7,5 voltios.
Regular la intensidad a 18 amperios, la tensión debe ser de 6,9 a 7,3 voltios.

Regulador XT 212:

a) Elemento limitador de intensidad:

Regular la tensión a 6,6 voltios, la intensidad debe ser de 23 a 25 amperios.
b) Elemento regulador de tensión:

Regular la intensidad a 5 amperios, la tensión debe ser de 7,3 a 7,7 voltios.
Regular la intensidad a 18 amperios, la tensión debe ser de 7,1 a 7,5 voltios.

ALTERNADORES Y REGULADORES (12 voltios)

IMPORTANTE:

- No hacer girar el alternador sin que esté conectado a la bateria.
- No conectar el alternador sobre una bateria de polaridad invertida.
- No verificar el funcionamiento del alternador haciendo cortocircuito entre el borne "+» y masa, o el borne "EXC" y masa.
- No cargar la batería, ni soldar con soldadura eléctrica, sin haber desconectado el alternador.

A. Alternador DUCELLIER 7522 B:

Potencia nominal: 260 Watios.
Intensidad nominal bajo 13 voltios: 20 amperios a 5.000 r. p. m. del alternador.
Resistencia del rotor: 7,4 Ω.
Velocidad de conjunción: $1.500 \mathrm{r} . \mathrm{p} . \mathrm{m}$. del alternador.
Relación de velocidad de rotación alternador/motor $=2,1 / 1$.
B. Alternadores DUCELLIER 7534 A ó 7532 A

Alternadores PARIS-RHONE A 11 M 4 ó A 11 M 6.

| Potencia | $: 400$ Watios |
| :--- | :---: | :--- |
| Tensión | $: 14$ voltios |
| Intensidad nominal | $: 28$ amperios a 8.000 r. p. m. alternador |
| Resistencia del rotor | $: 7 \Omega$ |
| Velocidad de conjunción: 1.450 r. p. m. del alternador. | |
| Relación de velocidad de rotación alternador/motor $=1,8 / 1$. | |

Regulador DUCELLIER 8347 C
Regulador PARIS-RHONE AYA 213
Valederos para los cuatro alternadores anteriores.

C. Relé transistorizado DUCELLIER 8363:

Sobre vehiculos equipados de alternadores con terminales de salidas alternativas: 7534 A - A 11 M 4.
Este relé manda la extinción del testigo de carga cuando el alternador carga normalmente.

CONTROL DE LA CARGA DE UN ALTERNADOR

Realizar la conexión indicada en el croquis, mediante un voltimetro V, un amperimetro \mathbf{A} y un reostato o mejor si es posible, mediante un aparato "voltimetro-amperimetro-reostato" de venta en el comercio.

Control de la carga: (batería bien cargada).
a) Alternador 7522 B :

Medir la carga, haciendo subir el régimen y actuar sobre el reostato para mantener la tension a 13 voltios.
Carga: 5 amperios a 900 r. p. m. motor (1.900 r. p. m. alternador) bajo 13 voltios.
17 amperios a 1.800 r. p. m. motor (3.800 r. p. m. alternador) bajo 13 voltios.
20 amperios a 2.400 r. p. m. motor (5.000 r. p. m. alternador) bajo 13 voltios.
b) Alternadores $7534 \mathrm{~A}-7532 \mathrm{~A}$ - A $11 \mathrm{M} 4-\mathrm{A} 11 \mathrm{M} 6$:

Medir la carga, haciendo subir el régimen y actuar sobre el reostato para mantener la tension a 14 voltios.
Carga: 6 amperios a 1.050 r. p. m. motor (1.900 r. p. m. alternador) bajo 14 voltios.
22 amperios a 2.350 r. p. m. motor (4.200 r. p. m. alternador) bajo 14 voltios.
28 amperios a 4.450 r. p. m. motor (8.000 r. p. m. alternador) bajo 14 voltios.

CONTROL DE UN REGULADOR DE TENSION 8347 ó AYA 213

Realizar la conexión indicada en el croquis, mediante un amperimetro \mathbf{A}, un voltimetro \mathbf{V} y un reostato o mediante un aparato "voltimetro-amperimetro-reostato".

Acelerar el motor para obtener 5.000 r. p. m. del alternador, es decir:

- 2.400 r. p. m. para los vehículos equipados con alternadores: 7522 B.
- 2.800 r. p. m. para los vehiculos equipados con alternadores: 7534 A - 7532 A - A 11 M 4 - A 11 M 6.

Actuar sobre el reostato para obtener una carga de 15 amperios.

Obtener la parada de la carga, quitando el contacto durante un tiempo muy corto.

Esperar a que el motor recupere su regimen y en este momento el voltimetro debe indicar una tensión comprendida entre 14 y 14,6 voltios a $20^{\circ} \mathrm{C}$.

NOTA: Esta cifra varia con la temperatura. La tensión varia a la inversa de la temperatura, de 0,2 voltios aproximadamente por $10^{\circ} \mathrm{C}$.

Si la tensión indicada no está en las tolerancias, el regulador es defectuoso.

MOTORES DE ARRANQUE
Motores de arranque 6 voltios: (mando mecánico)

Marca y tipo	ϕ mínimo colector después de rectificación	Intensidad absorbida	
		Bajo esfuerzo	
DUCELLIER 6112 A	$31,5 \mathrm{~mm}$.	30 a 35 A	70 a 90 A
PARIS-RHONE D 8 L 38	$34,5 \mathrm{~mm}$.	30 a 35 A	70 a 90 A
DUCELLIER 6188 A	$31,5 \mathrm{~mm}$.	30 a 35 A	70 a 90 A
PARIS-RHONE D 8 L 79	$34,5 \mathrm{~mm}$.	30 a 35 A	70 a 90 A

Motores de arranque 12 voltios: (mando mecánico)

Marca y tipo	ϕ mínimo colector después de rectificación	Intensidad absorbida	
		En vacío	Bajo esfuerzo
DUCELLIER 6134	$31,5 \mathrm{~mm}$.	25 a 30 A	45 a 60 A
PARIS-RHONE D 8 L 67	$34,5 \mathrm{~mm}$.	25 a 30 A	45 a 60 A
DUCELLIER 6174	$30,5 \mathrm{~mm}$.	25 a 30 A	45 a 60 A
PARIS-RHONE D 8 L 80	$34,5 \mathrm{~mm}$.	25 a 30 A	45 a 60 A

Reglaje del bendix:

6 voltios		12 voltios	
DUCELLIER	PARIS-RHONE	DUCELLIER	PARIS-RHONE
6112	D 8 L 38	6134	D 8 L 67
6188	D 8 L 79	6174	D 8 L 80
$\begin{aligned} & A=19,7 \mathrm{~mm} . \\ & B=31,7 \mathrm{~mm} . \end{aligned}$	$\begin{gathered} A=21 \mathrm{~mm} . \\ B=31,7 \mathrm{~mm} . \end{gathered}$	$\begin{aligned} & A=19,7 \mathrm{~mm} . \\ & B=31,7 \mathrm{~mm} . \end{aligned}$	$\begin{gathered} \mathrm{A}=21 \mathrm{~mm} . \\ \mathrm{B}=31,7 \mathrm{~mm} . \end{gathered}$

Reglaje de un contactor de motor de arranque 6134 D y D 8 L 67:

1. Aplicar un tensión de 12 voltios entre el borne de alimentación (1) y la carcasa, intercalando una lámpara testigo en serie.
2. Maniobrar la palanca (5) hasta que la lámpara se encienda En este momento preciso la superficie delantera del piñón de mando (6) debe encontrarse a una distancia $d=1 \pm 0,2 \mathrm{~mm}$. de la arandela de tope (7).
3. Si esta condición no se realiza, regular el recorrido del empujador (2), roscando o desenroscando el tope (4) de apoyo de la palanca (5).
Comprimir el muelle (3) para separar la ranura del tope (4), de la palanca (5)

Motores de arranque 12 voltios con solenoide:

Marca y tipo	ϕ mínimo del colector después de rectificación	Intensidad absorbida	
		En vacío	Bajo esfuerzo
DUCELLIER 6202 A-B	31 mm.	30 a 40 A	150 A
PARIS-RHONE D 8 E 99	$34,5 \mathrm{~mm}$.	30 a 40 A	150 A

CONTROL DE UN MOTOR DE ARRANQUE DUCELLIER 6202

Ver Op. A. 530-0-Pág. 7.

REGLAJE DE UN PIÑON DE MANDO DE UN MOTOR DE ARRANQUE DUCELLIER 6202

Ver Op. A. 530-0 - Pág. 7.

REGLAJE DE LOS FAROS

OBSERVACION: Un mando manual permite corregir el reglaje de los faros en función de la carga del vehículo. Pero es necesario efectuar un reglaje inicial de los faros, vehiculo vacio, en orden de marcha (con utillaje, rueda de repuesto y cinco litros de gasolina en el depósito).

A. MANDO DE FAROS RIGIDO

1. Verificar la holgura lateral del mando manual:

Colocar, si es necesario, unas arandelas de reglaje (2) para que la holgura comprendida entre la patilla de mando (3) de la barra de faros y la primera arandela de reglaje sea de $0,5 \mathrm{~mm}$.

2. Regular los faros:

a) Colocar el vehículo sobre una superficie plana y horizontal.
b) Girar el botón de mando (1) de izquierda a derecha hasta que haga tope.
Girar el botón de derecha a izquierda 2 vueltas y media.
c) Con la presión de los neumáticos y las alturas, correctamente reguladas, proceder al reglaje de los faros mediante un aparato del tipo:
«REGLOSCOPE» o «REGLOLUX"
Asegurarse que el vehiculo y el aparato de reglaje están en un mismo plano.

B. MANDO DE FAROS, POR CABLES

3. Regular los flexibles de cada faro:

a) Asegurarse que los flexibles (5) no forman ángulos demasiado cerrados.
b) Girar el botón de mando manual (4) a fondo en el sentido de las agujas de un reloj.
c) Poner el bloque óptico haciendo tope.

Para realizar esta operación:

- Aflojar la contratuerca (7).
- Desenroscar progresivamente el tensor (6) hasta que el bloque óptico haga tope.
(Esta operación se verifica, apretando sobre la parte superior del bloque).

4. Regular los faros:

a) Colocar el vehiculo sobre un suelo plano y horizontal.
b) Asegurarse que el botón de mando manual (4) está en la posición de roscado a fondo.
c) Con la presión de los neumáticos y las alturas correctas, proceder a realizar el reglaje de los faros, mediante un aparato del tipo:
"REGLOSCOPE» o «REGLOLUX"
Asegurarse que el vehiculo y el aparato de reglaje están en un mismo plano.

C. VEHICULOS DEL TIPO AM

OBSERVACION: EI mando manual permite corregir el reglaje de los faros en función de la carga del vehículo. Es necesario, sin embargo, efectuar un reglaje inicial de los faros, con el vehiculo vacio en orden de marcha (con el utillaje de abordo, rueda de repuesto y cinco litros de gasolina en el depósito).

Reglaje mediante un aparato del tipo:

 «REGLOLUX» o «REGLOSCOPE»,1. Comprobar que la presión de los neumáticos es correcta y que las alturas están debidamente reguladas.
2. Colocar el vehiculo en un piso plano y horizontal.
3. Girar la rueda (1) de mando manual a fondo en sentido contrario a las agujas de un reloj.
4. Roscar las dos ruedas (2) y (3) de reglaje hasta la mitad de su roscado.
5. Colocar el aparato de reglaje frente a un proyector (aparato de reglaje sobre el mismo plano que el vehículo).
6. Regular los proyectores:
a) En altura:

- Encender las luces de cruce.
- Accionando el botón moleteado (4), llevar la línea de corte del haz a la zona señalada por el aparato de reglaje.
b) En direçción:
- Encender las luces de carretera.
- Actuando a la vez sobre las dos ruedas (2) y (3) (roscando una y desenroscando la otra en la misma medida o inversamente) llevar el centro de la mancha de luz del haz luminoso sobre la señal indicada en el aparato de reglaje.

7. Regular el otro proyector.

NOTA: En caso de existir un «agujero negro» en el haz luminoso, sustituir la lámpara.

[^0]: a) Sustituir solamente una lámpara de iodo cuando el faro este apagado. Después de la utilización de los faros, es prudente dejarlos enfríar unos cinco minutos antes de proceder a una manipulación.
 b) No tocar la lámpara de iodo con los dedos. Cualquier huella de dedos producida por inadvertencia tiene que limpiarse con agua jabonosa y la lámpara secada con un trapo que no desprenda pelusilla.

[^1]: Posicionamiento del ventilador:

 - En el P.M.S., orientar el ventilador para situar, el "enganche de manivela", horizontal.

[^2]: * Carburador sin freno de ralentí (embrague clásico).

[^3]: I : Palanca del stárter
 P : Aguja
 S : Tubo de emulsión
 t : Filtro
 V : Mariposa de los gases
 W : Tornillo de riqueza de ralenti

[^4]: L : Palanca de bomba
 M : Membrana de bomba
 P : Punzón
 s : Tubo de emulsión
 t : Filtro de tamiz
 U_{1} : Orificio calibrado
 V : Mariposa de gases
 V_{1} : Mariposa de salida
 W : Tornillo de riqueza de ralenti

[^5]: - Junta homocinética de doble cruceta, del lado caja de velocidades
 - Junta homocinética de doble cruceta, del lado rueda.
 - Montaje: Posición indiferente de la mangueta estriada con relación al árbol estriado.

